Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers
<p>Composition and alpha diversity of sputum microbiota of healthy volunteers and TB patients. 16S rDNA from sputum samples were sequenced, and relative abundances for phyla are shown for (<b>a</b>) individual sample relative abundances of phyla by group: healthy volunteers, drug-sensitive TB, and drug-resistant TB. (<b>b</b>) Comparison of alpha diversity based on the number of observed species, Shannon diversity, and Simpson diversity of HVs (red) and TB patients (green). Statistical significance between groups is indicated by (<span class="html-italic">p</span> < 0.05; Wilcoxon test).</p> "> Figure 2
<p>Community structure of sputum microbiota of HVs and TB patients. Principal coordinate analysis (PCoA) plots based on (<b>a</b>) weighted and (<b>b</b>) unweighted UniFrac distances show significant distinct bacterial community clusters between TB patient and HV lung microbiota. (<b>c</b>) Bray–Curtis dissimilarity index. Plots represent HV samples (red symbols) and TB patient samples (green). Statistical significance between groups in (<b>c</b>) is indicated by (<span class="html-italic">p</span> < 0.05; ADONIS test).</p> "> Figure 3
<p>Comparison of alpha and beta diversity of drug-sensitive and drug-resistant TB patients. (<b>a</b>) Alpha diversity based on the number of observed species and Shannon and Simpson diversity; (<b>b</b>) PCoA weighted UniFrac; and (<b>c</b>) Bray–Curtis dissimilarity index. Plots represent HV samples (red symbols), drug-resistant TB patients (green), and drug-sensitive TB patients (blue). Statistical significance between groups is indicated by (<span class="html-italic">p</span> < 0.05). Wilcoxon and ADONIS tests for alpha and beta diversity comparisons, respectively, were done.</p> "> Figure 4
<p>Composition of the dominant genera in the sputum of TB patients and healthy volunteers. 16S rRNA hypervariable regions V3–V4 from sputum samples were sequenced, and the relative abundance of genera is shown.</p> "> Figure 5
<p>Differential abundance in sputum composition among HVs, DR-TB patients, and DS-TB patients. ANCOM-BC analysis showed differential abundance between TB vs. HV, DR-TB vs. HV, DS-TB vs. HV, and DR-TB vs. DS-TB at the family level (<b>a</b>) and the genus level (<b>b</b>). Statistical significance between groups is indicated by *, ** and ***, corresponding to <span class="html-italic">p</span> < 0.05, <0.01 and <0.001 respectively.</p> "> Figure 6
<p>Core lung microbiome at the genus level. The prevalence and relative abundance of the core microbiome at the genus level of both TB patients and HVs. The top 30 genera are shown.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Clinical Data
2.2. Sample Collection and DNA Extraction
2.3. Amplification of 16S rRNA Hypervariable Regions and Library Preparation
2.4. Sequencing Data Analysis and Diversity Comparisons
2.5. Relative Abundance, Core Microbiome, and Statistical Analysis
3. Results
3.1. Sequencing Data and Participant Demographics
3.2. α and β-Diversity Differences Were Observed When Comparing Sputum Microbiota from Healthy Volunteers and TB Cases
3.3. Antibiotic Susceptibility of TB Is Reflected in Sputum Beta Diversity
3.4. Microbiota Composition of TB Patients and HVs
3.5. Core Lung Microbiota Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Tuberculosis Report. 2020. Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 11 July 2021).
- Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med. 2013, 368, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, C.; Nyawo, G.R.; Wu, B.; Walzl, G.; Warren, R.; Segal, L.; Theron, G. The microbiome and tuberculosis: State of the art, potential applications, and defining the clinical research agenda. Lancet Respir. Med. 2019, 7, 892–906. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; He, L.; Huang, F.; Chen, J.; Cui, P.; Shen, Y.; Zhao, J.; Wang, W.; Zhang, Y.; et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS ONE 2013, 8, e83445. [Google Scholar] [CrossRef] [PubMed]
- Kuramitsu, H.K.; He, X.; Lux, R.; Anderson, M.H.; Shi, W. Interspecies Interactions within Oral Microbial Communities. Microbiol. Mol. Biol. Rev. 2007, 71, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Whiley, R.A.; Fleming, E.V.; Makhija, R.; Waite, R.D. Environment and Colonisation Sequence Are Key Parameters Driving Cooperation and Competition between Pseudomonas aeruginosa Cystic Fibrosis Strains and Oral Commensal Streptococci. PLoS ONE 2015, 10, e0115513. [Google Scholar] [CrossRef]
- Kato, I.; Vasquez, A.A.; Moyerbrailean, G.; Land, S.; Sun, J.; Lin, H.-S.; Ram, J.L. Oral microbiome and history of smoking and colorectal cancer. J. Epidemiol. Res. 2015, 2, 92. [Google Scholar] [CrossRef]
- Willis, J.R.; Gabaldón, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Genet. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Zhong, H.; Ren, H.; Lu, Y.; Fang, C.; Hou, G.; Yang, Z.; Chen, B.; Yang, F.; Zhao, Y.; Shi, Z.; et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 2019, 47, 373–383. [Google Scholar] [CrossRef]
- Allin, K.H.; The IMI-DIRECT Consortium; Tremaroli, V.; Caesar, R.; Jensen, B.; Damgaard, M.T.F.; Bahl, M.I.; Licht, T.R.; Hansen, T.; Nielsen, T.; et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 2018, 61, 810–820. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Salazar, E.O.; Ortiz-López, M.G.; Granados-Silvestre, M.D.L.Á.; Palacios-González, B.; Menjivar, M. Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Front. Microbiol. 2018, 9, 2494. [Google Scholar] [CrossRef] [Green Version]
- Chong, P.P.; Chin, V.K.; Looi, C.Y.; Wong, W.F.; Madhavan, P.; Yong, V.C. The Microbiome and Irritable Bowel Syndrome—A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019, 10, 1136. [Google Scholar] [CrossRef] [Green Version]
- Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C.; Gevers, D.; Petrosino, J.F.; Abubucker, S.; Badger, J.H.; et al. A framework for human microbiome research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.P.; Erb-Downward, J.R.; Martinez, F.J.; Huffnagle, G.B. The Microbiome and the Respiratory Tract. Annu. Rev. Physiol. 2016, 78, 481–504. [Google Scholar] [CrossRef] [Green Version]
- Man, W.H.; de Steenhuijsen Piters, W.A.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Santacroce, L.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Luperto, P.; De Nitto, E.; Topi, S. The Human Respiratory System and its Microbiome at a Glimpse. Biology 2020, 9, 318. [Google Scholar] [CrossRef]
- Cui, Z.; Zhou, Y.; Zelin, C.; Zhang, Y.; Zhang, S.; Tang, S.; Guo, X. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol. 2012, 12, 276. [Google Scholar] [CrossRef] [Green Version]
- Krishna, P.; Jain, A.; Bisen, P.S. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2016, 35, 1205–1210. [Google Scholar] [CrossRef]
- Vázquez-Pérez, J.A.; Carrillo, C.O.; Iñiguez-García, M.A.; Romero-Espinoza, I.; Márquez-García, J.E.; Falcón, L.I.; Torres, M.; Herrera, M.T. Alveolar microbiota profile in patients with human pulmonary tuberculosis and interstitial pneumonia. Microb. Pathog. 2020, 139, 103851. [Google Scholar] [CrossRef]
- Cheung, M.K.; Lam, W.Y.; Fung, W.Y.W.; Law, P.T.W.; Au, C.H.; Nong, W.; Kam, K.M.; Kwan, H.S.; Tsui, S.K.W. Sputum Microbiota in Tuberculosis as Revealed by 16S rRNA Pyrosequencing. PLoS ONE 2013, 8, e54574. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Lin, F.; Cui, Z.; Zhang, X.; Hu, C.; Shen, T.; Chen, C.; Zhang, X.; Guo, X.-K. Correlation between Either Cupriavidus or Porphyromonas and Primary Pulmonary Tuberculosis Found by Analysing the Microbiota in Patients’ Bronchoalveolar Lavage Fluid. PLoS ONE 2015, 10, e0124194. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Magurran, A.E. Biological diversity. Curr. Biol. 2005, 15, R116–R118. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, J. Emphasis on the deep or shallow parts of the tree provides a new characterization of phylogenetic distances. Genome Biol. 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Lin, H.; das Peddada, S. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Huse, S.M.; Ye, Y.; Zhou, Y.; Fodor, A.A. A Core Human Microbiome as Viewed through 16S rRNA Sequence Clusters. PLoS ONE 2012, 7, e34242. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Gail, M.H.; Consonni, D.; Carugno, M.; Humphrys, M.; Pesatori, A.C.; Caporaso, N.E.; Goedert, J.J.; Ravel, J.; Landi, M.T. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Eshetie, S.; van Soolingen, D. The respiratory microbiota: New insights into pulmonary tuberculosis. BMC Infect. Dis. 2019, 19, 1–7. [Google Scholar] [CrossRef]
- Lin, D.; Wang, X.; Li, Y.; Wang, W.; Li, Y.; Yu, X.; Lin, B.; Chen, Y.; Lei, C.; Zhang, X.; et al. Sputum microbiota as a potential diagnostic marker for multidrug-resistant tuberculosis. Int. J. Med. Sci. 2021, 18, 1935–1945. [Google Scholar] [CrossRef]
- De Steenhuijsen Piters, W.A.A.; Sanders, E.A.M.; Bogaert, D. The role of the local microbial ecosystem in respiratory health and disease. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budden, K.F.; Shukla, S.; Rehman, S.F.; Bowerman, K.; Keely, S.; Hugenholtz, P.; Armstrong-James, D.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med. 2019, 7, 907–920. [Google Scholar] [CrossRef]
- Wang, Z.; Bafadhel, M.; Haldar, K.; Spivak, A.; Mayhew, D.; Miller, B.E.; Tal-Singer, R.; Johnston, S.; Ramsheh, M.Y.; Barer, M.; et al. Lung microbiome dynamics in COPD exacerbations. Eur. Respir. J. 2016, 47, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigelman, R.; Kahlert, C.R.; Baty, F.; Rassouli, F.; Kleiner, R.L.; Kohler, P.; Brutsche, M.H.; Von Mering, C. Sputum DNA sequencing in cystic fibrosis: Non-invasive access to the lung microbiome and to pathogen details. Microbiome 2017, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- José, R.J.; Brown, J.S. Opportunistic bacterial, viral and fungal infections of the lung. Medicine 2016, 44, 378–383. [Google Scholar] [CrossRef]
- Verduin, C.M.; Hol, C.; Fleer, A.; van Dijk, H.; van Belkum, A. Moraxella catarrhalis: From emerging to established pathogen. Clin. Microbiol. Rev. 2002, 15, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, S.B.U.; Arsalan, S.A.; Ahmed, Z.; Shafiq, S. Prevalence and resistance pattern of Moraxella catarrhalis in community-acquired lower respiratory tract infections. Infect. Drug Resist. 2015, 8, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Nasir, N.; Sayeed, M.A.; Jamil, B. Ralstonia pickettii Bacteremia: An Emerging Infection in a Tertiary Care Hospital Setting. Cureus 2019, 11, e5084. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.P.; Adley, C.C. Ralstonia spp.: Emerging global opportunistic pathogens. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Waugh, J.B.; Granger, W.M.; Gaggar, A. Incidence, relevance and response for Ralsfonia respiratory infections. Clin. Lab. Sci. J. Am. Soc. Med. Technol. 2010, 23, 99–106. [Google Scholar]
- Kim, C.H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell. Mol. Immunol. 2021, 18, 1161–1171. [Google Scholar] [CrossRef]
- Bayram, N.; Devrim, İ.; Apa, H.; Gülfidan, G.; Türkyılmaz, H.N.; Günay, İ. Sphingomonas paucimobilis Infections in Children: 24 Case Reports. Mediterr. J. Hematol. Infect. Dis. 2013, 5, 1–5. [Google Scholar] [CrossRef]
- Wagh, P.; Ghewade, B. Sphingomonas paucimobilis—A Rare Cause of Community-Acquired Pneumonia. J. Datta Meghe Inst. Med. Sci. Univ. 2020, 15, 468. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Cookson, W.O. The lung microbiome in health and disease. Clin. Med. 2017, 17, 525–529. [Google Scholar] [CrossRef]
Clinical Variables Subjects (n) | TBP 39 | HVs 6 |
---|---|---|
Age median (years) | 37 (20–82) | 28 (23–55) |
Gender (Male: %) | 65% | 20% |
Pulmonary TB Classification (%) | 48.7% (n = 19) BK3 7.7% (n = 3) BK2 10% (n = 4) BK1 15% (n = 6) BK0 | - |
Place of Residence | 100% | |
Mexico City Metropolitan Area Countryside States (Guerrero, Veracruz, Puebla, Quintana Ro) (%) M. tuberculosis positive culture (%) | 3% (18,7,4,4,3%) 100% | - |
Antibiotic-resistant M. tuberculosis (%) | 69.2% (n = 27) | - |
Previous TB Treatment (%) | 45.1% | - |
HIV seropositive (%) | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdez-Palomares, F.; Muñoz Torrico, M.; Palacios-González, B.; Soberón, X.; Silva-Herzog, E. Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers. Microorganisms 2021, 9, 1762. https://doi.org/10.3390/microorganisms9081762
Valdez-Palomares F, Muñoz Torrico M, Palacios-González B, Soberón X, Silva-Herzog E. Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers. Microorganisms. 2021; 9(8):1762. https://doi.org/10.3390/microorganisms9081762
Chicago/Turabian StyleValdez-Palomares, Fernanda, Marcela Muñoz Torrico, Berenice Palacios-González, Xavier Soberón, and Eugenia Silva-Herzog. 2021. "Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers" Microorganisms 9, no. 8: 1762. https://doi.org/10.3390/microorganisms9081762
APA StyleValdez-Palomares, F., Muñoz Torrico, M., Palacios-González, B., Soberón, X., & Silva-Herzog, E. (2021). Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers. Microorganisms, 9(8), 1762. https://doi.org/10.3390/microorganisms9081762