Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications
<p>Evolution of LF levels during inhalation anthrax in human, adapted from references [<a href="#B52-microorganisms-08-01103" class="html-bibr">52</a>,<a href="#B53-microorganisms-08-01103" class="html-bibr">53</a>].</p> "> Figure 2
<p>Kinetics of LF and EF level in a mouse model of cutaneous anthrax, adapted from [<a href="#B46-microorganisms-08-01103" class="html-bibr">46</a>] (stage I to V defined through BLI imaging. Stage I: no BLI, stage II: BLI in the injected ear; stage III: BLI in the injected ear and in the draining cLNs; BLI in the injected ear, in the draining cLNs and in the spleen; stage V: mice in septicemia).</p> "> Figure 3
<p>(<b>A</b>) Kinetic trends of total LF and LT level in the serum of RMs with inhalation anthrax, adapted from [<a href="#B45-microorganisms-08-01103" class="html-bibr">45</a>]. (<b>B</b>) Kinetic trends of total LF, EF, and PA level in the serum of RMs and New Zealand white rabbits with inhalation anthrax, adapted from [<a href="#B39-microorganisms-08-01103" class="html-bibr">39</a>,<a href="#B45-microorganisms-08-01103" class="html-bibr">45</a>,<a href="#B50-microorganisms-08-01103" class="html-bibr">50</a>,<a href="#B51-microorganisms-08-01103" class="html-bibr">51</a>,<a href="#B58-microorganisms-08-01103" class="html-bibr">58</a>].</p> ">
Abstract
:1. Introduction
2. Why Detect Anthrax Toxins?
3. How Does One Detect Anthrax Toxins and for What Applications?
3.1. Directly: The First Approach to Detect Anthrax Toxins
3.2. Antigen Detection
3.3. The Enzymatic Activity of LF and EF as New Targets of Detection and Applications
4. Toxins In Vivo
4.1. Cutaneous Anthrax
4.2. Inhalation Anthrax
5. Conclusions
Funding
Conflicts of Interest
References
- Moayeri, M.; Leppla, S.H.; Vrentas, C.; Pomerantsev, A.P.; Liu, S. Anthrax Pathogenesis. Annu. Rev. Microbiol. 2015, 69, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, J.A.; Stephens, D.S.; Ashford, D.A.; Omenaca, C.; Topiel, M.S.; Galbraith, M.; Tapper, M.; Fisk, T.L.; Zaki, S.; Popovic, T.; et al. Bioterrorism-related inhalational anthrax: The first 10 cases reported in the United States. Emerg. Infect. Dis. 2001, 7, 933–944. [Google Scholar] [CrossRef] [PubMed]
- WHO. Anthrax in Humans and Animals. Available online: https://apps.who.int/iris/bitstream/handle/10665/97503/9789241547536_eng.pdf;jsessionid=3BF3DA0CD1CA21CFBCF1160F6B7FB128?sequence=1 (accessed on 1 April 2020).
- Antwerpen, M.H.; Zimmermann, P.; Bewley, K.; Frangoulidis, D.; Meyer, H. Real-time PCR system targeting a chromosomal marker specific for Bacillus anthracis. Mol. Cell. Probes 2008, 22, 313–315. [Google Scholar] [CrossRef]
- van der Goot, G.; Young, J.A. Receptors of anthrax toxin and cell entry. Mol. Asp. Med. 2009, 30, 406–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martchenko, M.; Jeong, S.Y.; Cohen, S.N. Heterodimeric integrin complexes containing beta1-integrin promote internalization and lethality of anthrax toxin. Proc. Natl. Acad. Sci. USA. 2010, 107, 15583–15588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molloy, S.S.; Bresnahan, P.A.; Leppla, S.H.; Klimpel, K.R.; Thomas, G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem. 1992, 267, 16396–16402. [Google Scholar] [PubMed]
- Friebe, S.; van der Goot, F.G.; Burgi, J. The Ins and Outs of Anthrax Toxin. Toxins 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Vitale, G.; Pellizzari, R.; Recchi, C.; Napolitani, G.; Mock, M.; Montecucco, C. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. J. Appl. Microbiol. 1998, 248, 706–711. [Google Scholar] [CrossRef]
- Hellmich, K.A.; Levinsohn, J.L.; Fattah, R.; Newman, Z.L.; Maier, N.; Sastalla, I.; Liu, S.; Leppla, S.H.; Moayeri, M. Anthrax lethal factor cleaves mouse nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLoS ONE 2012, 7, e49741. [Google Scholar] [CrossRef]
- Chavarria-Smith, J.; Vance, R.E. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog. 2013, 9, e1003452. [Google Scholar] [CrossRef] [Green Version]
- Leppla, S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proce. Natl. Acad. Sci. USA. 1982, 79, 3162–3166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puhar, A.; Dal Molin, F.; Horvath, S.; Ladant, D.; Montecucco, C. Anthrax edema toxin modulates PKA- and CREB-dependent signaling in two phases. PLoS ONE 2008, 3, e3564. [Google Scholar] [CrossRef]
- Hong, J.; Doebele, R.C.; Lingen, M.W.; Quilliam, L.A.; Tang, W.J.; Rosner, M.R. Anthrax edema toxin inhibits endothelial cell chemotaxis via Epac and Rap1. J. Biol. Chem. 2007, 282, 19781–19787. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.; Keppie, J. Observations on experimental anthrax; demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature 1954, 173, 869–870. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.; Keppie, J.; Stanley, J.L. Observations on the cause of death in experimental anthrax. Lancet 1954, 267, 474–476. [Google Scholar] [CrossRef]
- Smith, H.; Tempest, D.W.; Stanley, J.L.; Harris-Smith, P.W.; Gallop, R.C. The chemical basis of the virulence of Bacillus anthracis. VII. Two components of the anthrax toxin: Their relationship to known immunising aggressins. Br. J. Exp. Pathol. 1956, 37, 263–271. [Google Scholar] [PubMed]
- Strange, R.E.; Thorne, C.B. Further purification studies on the protective antigen of Bacillus anthracis produced in vitro. J. Bact. 1958, 76, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Beall, F.A.; Taylor, M.J.; Thorne, C.B. Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J. Bacteriol. 1962, 83, 1274–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne, C.B.; Belton, F.C. An agar-diffusion method for titrating Bacillus anthracis immunizing antigen and its application to a study of antigen production. J. Gen. Microb. 1957, 17, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Sargeant, K.; Stanley, J.L.; Smith, H. The serological relationship between purified preparations of factors I and II of the anthrax toxin produced in vivo and in vitro. J. Gen. Microb. 1960, 22, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Stanley, J.L.; Sargeant, K.; Smith, H. Purification of factors I and II of the anthrax toxin produced in vivo. J. Gen. Microbiol. 1960, 22, 206–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, P.S.; Ray, J.G., Jr.; Brachman, P.S.; Plotkin, S.A.; Pagano, J.S. Serologic testing for anthrax antibodies in workers in a goat hair processing mill. Am. J. Hyg. 1960, 72, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A.; Brachman, P.S.; Utell, M.; Bumford, F.H.; Atchison, M.M. An epidemic of inhalation anthrax, the first in the twentieth century. I. Clin. Features. Am. J. Med. 1960, 29, 992–1001. [Google Scholar] [CrossRef]
- Brachman, P.S.; Plotkin, S.A.; Bumford, F.H.; Atchison, M.M. An epidemic of inhalation anthrax: The first in the twentieth century. Ii. Epidemiol. Am. J. Hyg. 1960, 72, 6–23. [Google Scholar] [CrossRef]
- Darlow, H.M.; Pride, N.B. Serological diagnosis of anthrax. Lancet 1969, 2, 430. [Google Scholar] [CrossRef]
- Fish, D.C.; Lincoln, R.E. In vivo-produced anthrax toxin. J. Bacteriol. 1968, 95, 919–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, P.C.; Broster, M.G.; Carman, J.A.; Manchee, R.J.; Melling, J. Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity. Infect. Immun. 1986, 52, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Mabry, R.; Brasky, K.; Geiger, R.; Carrion, R., Jr.; Hubbard, G.B.; Leppla, S.; Patterson, J.L.; Georgiou, G.; Iverson, B.L. Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin. Vaccine Immunol. 2006, 13, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Kobiler, D.; Weiss, S.; Levy, H.; Fisher, M.; Mechaly, A.; Pass, A.; Altboum, Z. Protective antigen as a correlative marker for anthrax in animal models. Infect. Immun. 2006, 74, 5871–5876. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.A.; Ulrich, M.; Norris, S.; Reed, D.S.; Pitt, L.M.; Leffel, E.K. Identification of a surrogate marker for infection in the African green monkey model of inhalation anthrax. Infect. Immun. 2008, 76, 5790–5801. [Google Scholar] [CrossRef] [Green Version]
- Molin, F.D.; Fasanella, A.; Simonato, M.; Garofolo, G.; Montecucco, C.; Tonello, F. Ratio of lethal and edema factors in rabbit systemic anthrax. Toxicon 2008, 52, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Moayeri, M.; Chen, Z.; Harma, H.; Zhao, J.; Hu, H.; Purcell, R.H.; Leppla, S.H.; Hewlett, I.K. Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. Clin. Vaccine Immunol. 2009, 16, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragan, A.I.; Albrecht, M.T.; Pavlovic, R.; Keane-Myers, A.M.; Geddes, C.D. Ultra-fast pg/mL anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Anal. Biochem. 2012, 425, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Gupta, N.; Gupta, G.; Boopathi, M.; Pal, V.; Goel, A.K. Detection of protective antigen, an anthrax specific toxin in human serum by using surface plasmon resonance. Diagn. Microbiol. Infect. Dis. 2013, 77, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, R.A.; Quinn, C.P.; Schiffer, J.M.; Boyer, A.E.; Goldstein, J.; Bagarozzi, D.A.; Soroka, S.D.; Dauphin, L.A.; Hoffmaster, A.R. Detection of anthrax protective antigen (PA) using europium labeled anti-PA monoclonal antibody and time-resolved fluorescence. J. Immunol. Methods 2014, 408, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechaly, A.; Cohen, N.; Weiss, S.; Zahavy, E. A novel homogeneous immunoassay for anthrax detection based on the AlphaLISA method: Detection of B. anthracis spores and protective antigen (PA) in complex samples. Anal. Bioanal. Chem. 2013, 405, 3965–3972. [Google Scholar] [CrossRef]
- Cohen, N.; Mechaly, A.; Mazor, O.; Fisher, M.; Zahavy, E. Rapid homogenous time-resolved fluorescence (HTRF) immunoassay for anthrax detection. J. Fluoresc. 2014, 24, 795–801. [Google Scholar] [CrossRef]
- Solano, M.I.; Woolfitt, A.R.; Boyer, A.E.; Lins, R.C.; Isbell, K.; Gallegos-Candela, M.; Moura, H.; Pierce, C.L.; Barr, J.R. Accurate and selective quantification of anthrax protective antigen in plasma by immunocapture and isotope dilution mass spectrometry. Analyst 2019, 144, 2264–2274. [Google Scholar] [CrossRef]
- Boyer, A.E.; Quinn, C.P.; Beesley, C.A.; Gallegos-Candela, M.; Marston, C.K.; Cronin, L.X.; Lins, R.C.; Stoddard, R.A.; Li, H.; Schiffer, J.; et al. Lethal factor toxemia and anti-protective antigen antibody activity in naturally acquired cutaneous anthrax. J. Infect. Dis. 2011, 204, 1321–1327. [Google Scholar] [CrossRef]
- Kolesnikov, A.V.; Kozyr, A.V.; Ryabko, A.K.; Shemyakin, I.G. Ultrasensitive detection of protease activity of anthrax and botulinum toxins by a new PCR-based assay. Pathog. Dis. 2016, 74, ftv112. [Google Scholar] [CrossRef] [Green Version]
- Boyer, A.E.; Quinn, C.P.; Woolfitt, A.R.; Pirkle, J.L.; McWilliams, L.G.; Stamey, K.L.; Bagarozzi, D.A.; Hart, J.C., Jr.; Barr, J.R. Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Anal. Chem. 2007, 79, 8463–8470. [Google Scholar] [CrossRef] [PubMed]
- Suryadi, K.; Shine, N. Design and use of a novel substrate for simple, rapid, and specific early detection of anthrax infection. PLoS ONE 2018, 13, e0207084. [Google Scholar] [CrossRef]
- Boyer, A.E.; Gallegos-Candela, M.; Lins, R.C.; Kuklenyik, Z.; Woolfitt, A.; Moura, H.; Kalb, S.; Quinn, C.P.; Barr, J.R. Quantitative mass spectrometry for bacterial protein toxins—A sensitive, specific, high-throughput tool for detection and diagnosis. Molecules 2011, 16, 2391–2413. [Google Scholar] [CrossRef] [Green Version]
- Boyer, A.E.; Gallegos-Candela, M.; Quinn, C.P.; Woolfitt, A.R.; Brumlow, J.O.; Isbell, K.; Hoffmaster, A.R.; Lins, R.C.; Barr, J.R. High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures. Anal. Bioanal. Chem. 2015, 407, 2847–2858. [Google Scholar] [CrossRef] [Green Version]
- Rougeaux, C.; Becher, F.; Ezan, E.; Tournier, J.N.; Goossens, P.L. In vivo dynamics of active edema and lethal factors during anthrax. Sci. Rep. 2016, 6, 23346. [Google Scholar] [CrossRef] [PubMed]
- Duriez, E.; Goossens, P.L.; Becher, F.; Ezan, E. Femtomolar detection of the anthrax edema factor in human and animal plasma. Anal. Chem. 2009, 81, 5935–5941. [Google Scholar] [CrossRef] [PubMed]
- Israeli, M.; Rotem, S.; Elia, U.; Bar-Haim, E.; Cohen, O.; Chitlaru, T. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity. Toxins 2016, 8, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, A.E.; Woolfitt, A.R.; Candela, M.; Lins, R.C.; Solano, M.; Lee, J.; Sanford, D.; Stark, G.; Dreier, T.; Quinn, P.; et al. Toxin levels in organ tissues of nonhuman primates with inhalation anthrax. In Proceedings of the International Conference on Bacillus anthracis, B. cereus and B. thuringiensis, Victoria, BC, Canada, 1–5 September 2013. [Google Scholar]
- Woolfitt, A.R.; Juni, B.A.; Gallegos-Candela, M.; Lins, R.; Solano, M.; Lee, J.; Sanford, D.; Stark, G.; Dreier, T.; Barr, J. Development of anthrax toxemia in new zealand white rabbits developing systemic anthrax after exposure to low-dose ames spores. In Proceedings of the International Conference on Bacillus anthracis, B. cereus, B. thuringiensis, Victoria, BC, Canada, 1–5 September 2013. [Google Scholar]
- Lins, R.C.; Boyer, A.E.; Kuklenyik, Z.; Woolfitt, A.R.; Goldstein, J.; Hoffmaster, A.R.; Gallegos-Candela, M.; Leysath, C.E.; Chen, Z.; Brumlow, J.O.; et al. Zeptomole per milliliter detection and quantification of edema factor in plasma by LC-MS/MS yields insights into toxemia and the progression of inhalation anthrax. Anal. Bioanal. Chem. 2019, 411, 2493–2509. [Google Scholar] [CrossRef]
- Walsh, J.J.; Pesik, N.; Quinn, C.P.; Urdaneta, V.; Dykewicz, C.A.; Boyer, A.E.; Guarner, J.; Wilkins, P.; Norville, K.J.; Barr, J.R.; et al. A case of naturally acquired inhalation anthrax: Clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor. Clin. Infect. Dis. 2007, 44, 968–971. [Google Scholar] [CrossRef]
- Sprenkle, M.D.; Griffith, J.; Marinelli, W.; Boyer, A.E.; Quinn, C.P.; Pesik, N.T.; Hoffmaster, A.; Keenan, J.; Juni, B.A.; Blaney, D.D. Lethal factor and anti-protective antigen IgG levels associated with inhalation anthrax, Minnesota, USA. Emerg. Infect. Dis. 2014, 20, 310–314. [Google Scholar] [CrossRef]
- Weiner, Z.P.; Boyer, A.E.; Gallegos-Candela, M.; Cardani, A.N.; Barr, J.R.; Glomski, I.J. Debridement increases survival in a mouse model of subcutaneous anthrax. PLoS ONE 2012, 7, e30201. [Google Scholar] [CrossRef] [PubMed]
- Weiner, Z.P.; Ernst, S.M.; Boyer, A.E.; Gallegos-Candela, M.; Barr, J.R.; Glomski, I.J. Circulating lethal toxin decreases the ability of neutrophils to respond to Bacillus anthracis. Cell Microbiol 2014, 16, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Marston, C.K.; Ibrahim, H.; Lee, P.; Churchwell, G.; Gumke, M.; Stanek, D.; Gee, J.E.; Boyer, A.E.; Gallegos-Candela, M.; Barr, J.R.; et al. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar. PLoS ONE 2016, 11, e0156987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rougeaux, C.; Becher, F.; Goossens, P.L.; Tournier, J.N. Very Early Blood Diffusion of the Active Lethal and Edema Factors of Bacillus anthracis After Intranasal Infection. J. Infect. Dis. 2020, 221, 660–667. [Google Scholar] [CrossRef]
- Boyer, A.E.; Quinn, C.P.; Hoffmaster, A.R.; Kozel, T.R.; Saile, E.; Marston, C.K.; Percival, A.; Plikaytis, B.D.; Woolfitt, A.R.; Gallegos, M.; et al. Kinetics of lethal factor and poly-D-glutamic acid antigenemia during inhalation anthrax in rhesus macaques. Infect. Immun. 2009, 77, 3432–3441. [Google Scholar] [CrossRef] [Green Version]
- Holty, J.E.; Bravata, D.M.; Liu, H.; Olshen, R.A.; McDonald, K.M.; Owens, D.K. Systematic review: A century of inhalational anthrax cases from 1900 to 2005. Ann. Intern. Med. 2006, 144, 270–280. [Google Scholar] [CrossRef]
- Gallegos-Candela, M.; Boyer, A.E.; Woolfitt, A.R.; Brumlow, J.; Lins, R.C.; Quinn, C.P.; Hoffmaster, A.R.; Meister, G.; Barr, J.R. Validated MALDI-TOF-MS method for anthrax lethal factor provides early diagnosis and evaluation of therapeutics. Anal. Biochem. 2018, 543, 97–107. [Google Scholar] [CrossRef]
- Tournier, J.N.; Rougeaux, C.; Biot, F.V.; Goossens, P.L. Questionable Efficacy of Therapeutic Antibodies in the Treatment of Anthrax. mSphere 2019, 4. [Google Scholar] [CrossRef] [Green Version]
Direct Method of Detection | Positive Points | Limit of Detection (LOD) | Negative Points | References |
---|---|---|---|---|
Ouchterlony method | Replaced in vivo passive protection and edema neutralization tests | Less sensitive and discriminative than indirect hemagglutination test (IHA) and enzyme-linked immunosorbent assay (ELISA) tests | [20,28] | |
ELISA PA, LF | Results within 2 h | LOD 1 ng/mL for protective antigen (PA) and 20 ng/mL for lethal factor (LF) | Late detection | [29] |
ECLI, PA | LOD 1 ng/mL | [30] | ||
ECLI, PA | Results in ≈ 35 min Sensitivity and specificity of 100% and 97% | LOD 2.5 ng/mL | [31] | |
Western-Blot PA, LF, EF | Interference of serum proteins Late detection | [32] | ||
ENIA, PA | No interference by LF or edema factor (EF) Capacity to bind a high number of PA molecules | LOD 10 pg/mL | Mainly qualitative Concentration must be >1 µg/mL and <1 ng/mL for reliable results | [33] |
MEF-PA assay | Results in 40 min | Sensitivity 1 pg/mL | [34] | |
SPR technology, PA | LOD 10 pg/mL | [35] | ||
TRF, PA | Effective rate 90% | LOD 0.223 ng/mL for PA83 LOD 0.558 ng/mL for PA63 | Interference of anthrax immune globulin (AIG) treatment Slight interference by LF binding for PA LOD | [36] |
AlphaLISA, PA | LOD 100 pg/mL in spiked naïve sera LOD 2 ng/mL | PA spiked in serum | [37] | |
HTRF, PA | Assay in 15 min | [38] | ||
LC-MS/MS, PA | Detection and quantification of total PA (PA83 + PA63) and PA83 | Detection limits 1.3–2.9 ng/mL in plasma | [39] |
Detection of Enzymatic Activity | Positive Points | LOD | Negative Points | References |
---|---|---|---|---|
MALDI-TOF MS, LF | No interference from PA83 or PA63 | 0.005–0.25 ng/mL | Late detection of LF | [42] |
MALDI-TOF MS, LF | 0.005–0.25 ng/mL | LOD varying according to the volume sample | [44] | |
MALDI-TOF MS, LT | Sensitivity and specificity of 100% | In plasma, detection limit of 0.033 ng/mL and 0.0075 ng/mL for the 2- and 1.8 h reaction times | [42,45] | |
LC-MS/MS, LF | Assay directly in the sample, without an immunocapture step | In the plasma, detection limit of 0.4 ng/mL | High detection limit in the ear mouse (40 ng/mL) Lower sensitivity and specificity | [46] |
New PCR-based assay, LF | Rapid assay | Detection of 50 fg of LF spiked into human serum | [41] | |
MAPKKide based assay, LF | Rapid | After capture of LF, LOD< 5 pg/mL with HPLC LOD 20 pg/mL with microplate reader Directly in sample, LOD < 1 ng/mL in 5 h LOD 25 ng/mL in 15 min | [43] | |
ELISA, EF | Detection directly in sample Rapid (4 h) | LOD 1 pg/mL in human plasma LOD 10 pg/mL in animal plasma | Risk of false-positive with toxins of Bordetella pertussis and Pseudomonas aeruginosa | [47] |
ELISA, EF | Detection directly in sample Rapid | LOD 2.5 pg/mL in mouse plasma LOD 0.85 pg/ear mouse tissue | Risk of false-positive with toxins of Bordetella pertussis and Pseudomonas aeruginosa | [46] |
Monitoring ATP depletion, EF | Rapid (30 min) | Sensitivity of 0.1 μg/mL Addition of anti-EF antibodies | [48] | |
LC/ESI-MS/MS, EF | Detection limit 1000 times lower than that of LF | [44] | ||
MALDI-TOF MS, total EF, ETx | In the plasma, LOD of 0.02 pg/mL for EF and ETx | [49,50] | ||
LC-MS/MS, EF | Sensitivity and specificity of 100% | In the plasma, detection limit of 20 fg/mL | [51] | |
LC-MS/MS, total PA (PA83 + PA63) and PA83 | Detection limits 1.3–2.9 ng/mL in 100 μL plasma | [39] | ||
MALDI-TOF MS, total PA, PA83 | LOD of 1.87 ng/mL for total PA and 1.22 ng/mL for PA83 | [49,50] |
Method of Detection | Model or Cases of Infection | First Time of Detection | Level of Toxins | References |
---|---|---|---|---|
MS | Human | Three to eight days after onset of symptoms | 0.0005 < LF < 1.264 ng/mL, serum | [40] |
TRF for PA MALDI-TOF MS for LF | Human | One to eight days after onset of symptoms | 1.02 < PA < 68.73 ng/mL, serum 0.035 < LF < 1.264 ng/mL, serum | [36] |
Western blot | Rabbit | 48 h | 3.6 < PA < 49.4 μg/mL 10.3 < LF < 35.2 μg/mL 1.9 < EF < 6.1 μg/mL | [32] |
MALDI-TOF MS | Mouse | 12 h | 458 pg LF/injected ear 28 pg LF/cLN 476 pg LF/mL serum | [54] |
MALDI-TOF MS | Mouse | Early phase of infection defined as BLI* in injected ear | 16.25 ng LF/g of ear 0.253 ng LF/g of cLN 0.894 ng LF/mL serum LF detected in heart, lungs, spleen, liver | [55] |
LC-MS/MS for LF EIA for EF | Mouse | Thirty minutes to 3 h 30 min | 198 ng LF/ear 1.2 pg EF/ear 1.7 ng LF/mL plasma 4.6 pg EF/mL plasma | [46] |
Method of Detection | Model or Cases of Infection | First Time of Detection | Level of Toxins | References |
---|---|---|---|---|
MS | Human | Three to four days after onset of symptoms | LF, 294.3 ng/mL, plasma | [52] |
TRF for PA MALDI-TOF MS for LF | Human | Two and eight days after onset of symptoms | PA, 1.81 & 68.73 ng/mL, serum LF, 0.7 & 57.9 ng/mL, serum | [36] |
MALDI-TOF MS | Human | A few days after onset of symptoms Initial drainage | LF, 58 ng/mL, plasma LF, 16.2 ng/mL, pleural fluid | [53] |
ELISA | Guinea pig Rabbit | 72–81 h (before death) ≈ 48 h | 0.1 < PA < 1.7 μg/mL, serum 80 < PA < 100 μg/mL, serum 11 < LF < 15 μg/mL, serum | [29] |
ELISA, ECLI | Guinea pig Rabbit | 24 h 18 h | PA, ≈ 2 ng/mL 1 < PA < 10 ng/mL, serum | [30] |
MALDI-TOF MS | RM | Two days post-infection | 30 < PA <2 50 ng/mL, serum | [42] |
MALDI-TOF MS | RM | 24 h | 0.006 < LF < 0.2 ng/mL, serum, 60% of animals | [58] |
MALDI-TOF MS | RM | 18 h for the first, 24 h for the second | Total LF, 0.026 ng/mL, serum Total LF, 0.049 ng/mL, serum | [45] |
MS | Rabbits | 12 h for LF 24 h for EF | [50] | |
LC-MS/MS | RM | 24 h | EF, 0.16 and 0.462 pg/mL, serum, 40% of RM | [51] |
LC-MS/MS | RM | 48 h | 84.3 < PA63 < 310 ng/mL, serum, 100% of RM | [39] |
LC-MS/MS for LF EIA for EF | Mouse | 1 h | LF, 2.63 ng/mL, plasma, all mice EF, 5.5 pg/mL, plasma, 42% of mice | [57] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tournier, J.-N.; Rougeaux, C. Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms 2020, 8, 1103. https://doi.org/10.3390/microorganisms8081103
Tournier J-N, Rougeaux C. Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms. 2020; 8(8):1103. https://doi.org/10.3390/microorganisms8081103
Chicago/Turabian StyleTournier, Jean-Nicolas, and Clémence Rougeaux. 2020. "Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications" Microorganisms 8, no. 8: 1103. https://doi.org/10.3390/microorganisms8081103
APA StyleTournier, J.-N., & Rougeaux, C. (2020). Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms, 8(8), 1103. https://doi.org/10.3390/microorganisms8081103