Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure–Temperature Detection
<p>(<b>a</b>) Schematic of the preparation process of the PSCP sensor and the structure of the materials; (<b>b</b>) Initial textile; (<b>c</b>) CS@PET textile; (<b>d</b>) PEDOT:PSS/SWCNTs/CS@PET e−textile; (<b>e</b>) The physical drawing of the PSCP sensor; (<b>f</b>) Schematic structure of a dual-mode sensor for pressure and temperature.</p> "> Figure 2
<p>(<b>a</b>) XRD images of initial textile and conductive textile; (<b>b</b>) The side view of the conductive textile; (<b>c</b>) EDS mapping images of C.O.S. elements; (<b>d</b>) SEM image of the initial textile surface; (<b>e</b>) SEM image of the PEDOT:PSS/SWCNTs textile surface without chitosan; (<b>f</b>) SEM image of the PEDOT:PSS/SWCNTs/CS@PET textile surface.</p> "> Figure 3
<p>(<b>a</b>) The stress distribution of e−textiles inside the sensor under different pressures; (<b>b</b>) The sensitivity of the sensor; (<b>c</b>) The current response of the sensor is in the range of 0−40 kPa; (<b>d</b>) The voltage scanning results of the sensor in the range of −0.1 V−0.1 V; (<b>e</b>) The minimum pressure response of the sensor; (<b>f</b>) The response time and recovery time of the sensor to pressure; (<b>g</b>) The response current of the sensor over 2000 compression–release cycles. (I<sub>0</sub>: Initial current when no pressure is applied).</p> "> Figure 4
<p>(<b>a</b>) Thermoelectric effect diagram of dual−mode sensor; (<b>b</b>) The Seebeck coefficient of PEDOT:PSS and SWCNTs after different proportions of impregnation; (<b>c</b>) I–V curves at different temperatures; (<b>d</b>) The thermal voltage generated by the dual-mode sensor at different temperatures; (<b>e</b>) The minimum detection limit of temperature difference; (<b>f</b>) Temperature response time; (<b>g</b>) Cyclic testing of temperature response.</p> "> Figure 5
<p>(<b>a</b>) I−V curves at different pressures and temperatures; (<b>b</b>) Seebeck coefficient under different pressures; (<b>c</b>) Pressure sensitivity at various temperature differences; (<b>d</b>) The sensing mechanism of pressure and temperature; (<b>e</b>) Multiple pressure tests at a temperature difference of 50 K; (<b>f</b>) Multiple temperature tests at 25 kPa. (I<sub>0</sub>: Initial current when no pressure is applied).</p> "> Figure 6
<p>(<b>a</b>) A schematic diagram of the sensor measuring on the skin surface; (<b>b</b>) Pulse signal monitoring diagram; (<b>c</b>) Body temperature signal monitoring diagram; (<b>d</b>–<b>f</b>) Pulse signals in the wrist, elbow, and neck; (<b>g</b>–<b>i</b>) Temperature signals on the wrist, elbow, and neck. (I<sub>0</sub>: Initial current when no pressure is applied).</p> ">
Abstract
:1. Introduction
2. Experiment Section
2.1. Materials
2.2. Fabrication of PEDOT:PSS/SWCNTs/CS@PET Textile
2.3. Fabrication of PSCP Sensor
2.4. Characterization and Measurement
3. Results and Discussion
3.1. Structural Framework of the Dual-Mode PSCP Sensor
3.2. Characterization of the Dual-Mode PSCP Sensor
3.3. Pressure-Sensing Performance of the Dual-Mode PSCP Sensor
3.4. Temperature-Sensing Performance of the Dual-Mode PSCP Sensor
3.5. Pressure- and Temperature-Sensing Performance of Dual-Mode Sensor
3.6. Dual-Mode Sensor for Pulse and Body Temperature Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.Y.; Yang, W.K.; Hu, F.D.; Zheng, X.W.; Zheng, Y.J.; Liu, H.; Algadi, H.; Chen, K. Ultrasensitive Wearable Strain Sensor for Promising Application in Cardiac Rehabilitation. Adv. Compos. Hybrid Mater. 2023, 6, 21. [Google Scholar] [CrossRef]
- Yang, S.Y.; Yang, W.K.; Yin, R.; Liu, H.; Sun, H.L.; Pan, C.F.; Liu, C.T.; Shen, C.Y. Waterproof Conductive Fiber with Microcracked Synergistic Conductive Layer for High-Performance Tunable Wearable Strain Sensor. Chem. Eng. J. 2023, 453, 139716. [Google Scholar] [CrossRef]
- Ning, C.; Cheng, R.W.; Jiang, Y.; Sheng, F.F.; Yi, J.; Shen, S.; Zhang, Y.H.; Peng, X.; Dong, K.; Wang, Z.L. Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human Respiratory Monitoring. ACS Nano 2022, 16, 2811–2821. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.D.; Du, C.F.; Liao, L.L.; Zhang, H.J.; Zhou, H.Q.; Zhou, W.C.; Ren, T.N.; Sun, Z.C.; Lu, Y.F.; Nie, Z.T.; et al. Approaching Intrinsic Dynamics of MXenes Hybrid Hydrogel for 3D Printed Multimodal Intelligent Devices with Ultrahigh Superelasticity And Temperature Sensitivity. Nat. Commun. 2022, 13, 3420. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Wang, Y.; Fan, Z.; Wu, K. Double Optical Fiber Temperature Compensation Method for Measurement of Interface Pressure Between Simulated Cable and Accessory at High Temperatures. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1329–1336. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Zhang, D.Z.; Liu, X.H.; Yang, Y.; Wang, X.W.; Xue, Q.Z. Self-Powered Multifunctional Monitoring and Analysis System Based on Dual-Triboelectric Nanogenerator and Chitosan/Activated Carbon Film Humidity Sensor. Nano Energy 2022, 94, 106881. [Google Scholar] [CrossRef]
- Duan, Z.H.; Yuan, Z.; Jiang, Y.D.; Zhao, Q.N.; Huang, Q.; Zhang, Y.J.; Liu, B.H.; Tai, H.L. Power Generation Humidity Sensor Based on Primary Battery Structure. Chem. Eng. J. 2022, 446, 136910. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Yang, W.K.; Wang, Z.Q.; Liu, H.; Yin, R.; Liu, C.T.; Shen, C.Y. Highly Compressible and thermal Insulative Conductive MXene/PEDOT:PSS@melamine Foam for Promising Wearable Piezoresistive Sensor. Appl. Phys. Lett. 2023, 23, 043507. [Google Scholar] [CrossRef]
- Chen, B.D.; Zhang, L.; Li, H.Q.; Lai, X.J.; Zeng, X.R. Skin-inspired Flexible and High-Performance MXene@polydimethylsiloxane Piezoresistive Pressure Sensor for Human Motion Detection. Colloid Interface Sci. 2022, 617, 478–488. [Google Scholar] [CrossRef]
- Xu, Z.J.; Wu, D.Z.; Chen, Z.W.; Wang, Z.B.; Cao, C.; Shao, X.Y.; Zhou, G.; Zhang, S.H.; Wang, L.Y.; Sun, D.H. A Flexible Pressure Sensor with Highly Customizable Sensitivity and Linearity via Positive Design of Microhierarchical Structures with A Hyperelastic Model. Microsyst. Nanoeng. 2023, 9, 5. [Google Scholar] [CrossRef]
- Kang, J.Y.; Liu, T.; Lu, Y.; Lu, L.L.; Dong, K.; Wang, S.J.; Li, B.; Yao, Y.; Bai, Y.; Fan, W. Polyvinylidene Fluoride Piezoelectric Yarn for Real-Time Damage Monitoring of Advanced 3D Textile Composites. Compos. Part B Eng. 2022, 245, 110229. [Google Scholar] [CrossRef]
- Yi, Z.R.; Liu, Z.X.; Li, W.B.; Ruan, T.; Chen, X.; Liu, J.Q.; Yang, B.; Zhang, W.M. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring. Adv. Mater. 2022, 34, 2110291. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Xie, G.Z.; Jiang, Y.D.; Chen, C.X.; Su, Y.J.; Wang, Y.; Tai, H.L. Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring. Sens. Actuators A Phys. 2020, 301, 111789. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y.J.; Yang, H.; Oh, J.H. Fabrication of Hierarchically Porous Structured PDMS Composites and Their Application as A Flexible Capacitive Pressure Sensor. Compos. Part B Eng. 2021, 211, 108607. [Google Scholar] [CrossRef]
- Xiong, Y.X.; Shen, Y.K.; Tian, L.; Hu, Y.G.; Zhu, P.L.; Sun, R.; Wong, C.P. A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring. Nano Energy 2020, 70, 104436. [Google Scholar] [CrossRef]
- Lv, C.Y.; Tian, C.C.; Jiang, J.S.; Dang, Y.; Liu, Y.; Duan, X.X.; Li, Q.N.; Chen, X.J.; Xie, M.Y. Ultrasensitive Linear Capacitive Pressure Sensor with Wrinkled Microstructures for Tactile Perception. Adv. Sci. 2023, 10, 2206807. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.X.; Liu, Y.; Shi, J.L.; Liu, Z.G.; Wang, Q.; Guo, C.F. High-porosity Foam-Based Iontronic Pressure Sensor with Superhigh Sensitivity of 9280 kPa−1. Nano-Micro Lett. 2022, 14, 21. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Liu, Z.Y.; Jin, G.Q.; Yang, M.K.Y.; Shao, Z.; Li, W.Z.; Wu, Y.Q.; Liu, L.L.; Yan, F. Electric-Field-Induced Gradient Ionogels for Highly Sensitive, Broad-Range-Response, and Freeze/Heat-Resistant Ionic Fingers. Adv. Mater. 2021, 33, 2008486. [Google Scholar] [CrossRef]
- Afroj, S.; Tan, S.; Abdelkader, A.M.; Novoselov, K.S.; Karim, N. Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications. Adv. Funct. Mater. 2020, 30, 2000293. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Avellar, L.; Frizera, A.; Marques, C. Smart Textiles for Multimodal Wearable Sensing Using Highly Stretchable Multiplexed Optical Fiber System. Sci. Rep. 2020, 10, 13867. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Dong, S.T.; Wen, X.H.; Ma, H.P.; Zhao, X.F. 3D Tubular Graphene Sponge/PEDOT:PSS Based Stretchable and Flexible Device for Noninterfering Pressure-Temperature Detection. Sensor Actuators A Phys. 2023, 360, 114544. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Guo, K.Q.; Yin, F.F.; Yue, W.J.; Li, Y.; Yin, J.N. The Dual-Mode Sensing of Pressure and Temperature Based on Multilayer Structured Flexible Sensors for Intelligent Monitoring of Human Physiological Information. Compos. Sci. Technol. 2023, 238, 110012. [Google Scholar] [CrossRef]
- Wang, N.; Xia, Z.P.; Yang, S.K.; Pan, J.J.; Lei, T.D.; Qiao, W.; Wu, L.W. Pressure-Temperature Dual-Parameter Sensors Designed by Wood-Derived Thermoelectric Composites: Micro-Pressure High Sensitivity. Compos. Part B Eng. 2023, 264, 110928. [Google Scholar] [CrossRef]
- Yin, Y.M.; Wang, Y.L.; Li, H.Y.; Xu, J.; Zhang, C.; Li, X.; Cao, J.W.; Feng, H.F.; Zhu, G. A Flexible Dual Parameter Sensor with Hierarchical Porous Structure for Fully Decoupled Pressure–Temperature Sensing. Chem. Eng. J. 2022, 430, 133158. [Google Scholar] [CrossRef]
- Li, L.T.; Zhu, G.X.; Wang, J.; Chen, J.W.; Zhao, G.Y.; Zhu, Y.T. A Flexible and Ultrasensitive Interfacial Iontronic Multisensory Sensor with An Array of Unique “Cup-Shaped” Microcolumns for Detecting Pressure and Temperature. Nano Energy 2023, 105, 108012. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Li, P.; Wang, X.; Xia, Y.S.; Yang, J. Flexible Battery-Free Wireless Sensor Array Based on Functional Gradient-Structured Wood for Pressure and Temperature Monitoring. Adv. Funct. Mater. 2022, 33, 2208900. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Li, S.B.; He, Z.D.; Wu, Y.Z.; Gao, Z.Y.; Hu, C.; Hu, S.Q.; Wang, S.D.; Liu, C.; Shang, J.; et al. Dual Mode Strain–Temperature Sensor with High Stimuli Discriminability and Resolution for Smart Wearables. Adv. Funct. Mater. 2023, 33, 2214907. [Google Scholar] [CrossRef]
- Cao, X.Y.; Zhang, M.; Yang, Y.; Deng, H.; Fu, Q. Thermoelectric PEDOT:PSS Sheet/SWCNTs composites films with layered structure. Compos. Commun. 2021, 27, 100869. [Google Scholar] [CrossRef]
- Wei, S.S.; Zhang, Y.C.; Lv, H.C.; Deng, L.; Chen, G.M. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chem. Eng. J. 2022, 428, 131137. [Google Scholar] [CrossRef]
- Zhu, Z.F.; Su, Y.; Chen, J.; Zhang, J.Y.; Liang, L.X.; Nie, Z.D.; Tang, W.; Liang, Y.S.; Li, H. PEDOT:PSS-Based Wearable Flexible Temperature Sensor and Integrated Sensing Matrix for Human Body Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 56082–56094. [Google Scholar] [CrossRef]
- Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. Adv. Mater. 2021, 33, 2005902. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.K.; Zhu, T.X.; Wang, J.R.; Zheng, Z.J.; Li, Y.; Lai, Y.K. Functionalized fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Lett. 2022, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Libanori, A.; Chen, G.R.; Zhao, X.; Zhou, Y.H.; Chen, J. Smart Textiles for Personalized Healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Ge, C.Y.; Li, R.Z.; Zhou, L.J.; An, X.Y.; Duan, Z.; Chen, J.T.; Li, Y.S.; Zhang, Y.; Hu, P.A.; Wang, Z.L.; et al. Dual-Function Tactile Sensor with Linear Pressure and Temperature Perception at Low Degree of Coupling. Adv. Intell. Syst. 2023, 5, 2200398. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.Y.; Wang, Q.; Ma, S.Q.; Xiao, J.L.; Liu, H.T.; Pan, J.; Zhang, Z.; Zhang, L. Flexible Optoelectronic Multimodal Proximity/Pressure/Temperature Sensors with Low Signal Interference. Adv. Mater. 2023, 35, 2304701. [Google Scholar] [CrossRef]
- Xie, Y.M.; Cheng, Y.F.; Ma, Y.N.; Wang, J.; Zou, J.J.; Wu, H.; Yue, Y.; Li, B.W.; Gao, Y.H.; Zhang, X.; et al. 3D MXene-based Flexible Network for High-Performance Pressure Sensor with A Wide Temperature Range. Adv. Sci. 2022, 10, 2205303. [Google Scholar] [CrossRef]
- Gao, F.L.; Min, P.; Gao, X.Z.; Li, C.J.; Zhang, T.T.; Yu, Z.Z.; Li, X.F. Integrated Temperature and Pressure Dual-Mode Sensors Based on Elastic PDMS Foams Decorated with Thermoelectric PEDOT:PSS and Carbon Nanotubes for Human Energy Harvesting and Electronic-Skin. J. Mater. Chem. A 2022, 10, 18256–18266. [Google Scholar] [CrossRef]
- Wu, J.H.; Fan, X.Q.; Liu, X.; Ji, X.Y.; Shi, X.L.; Wu, W.B.; Yue, Z.; Liang, J.J. Highly Sensitive Temperature-Pressure Bimodal Serogel with Stimulus Discriminability for Human Physiological Monitoring. Nano Lett. 2022, 22, 4459–4467. [Google Scholar] [CrossRef]
- Gao, F.L.; Liu, J.; Li, X.P.; Ma, Q.; Zhang, T.T.; Yu, Z.Z.; Sheng, J.; Li, R.W.; Li, X.F. Ti3C2Tx MXene-Based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli. ACS Nano 2023, 17, 16036–16047. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, R.R.; Wang, G.E.; Feng, S.Y.; Shi, W.; Cheng, Y.; Shi, L.J.; Fu, K.Y.; Sun, J. Mutually Noninterfering Flexible Pressure−Temperature Dual-Modal Sensors Based on Conductive Metal−Organic Framework for Electronic Skin. ACS Nano 2022, 16, 473–484. [Google Scholar] [CrossRef]
- Lo, L.W.; Zhao, J.Y.; Wan, H.C.; Wang, Y.; Chakrabartty, S.; Wang, C. A Soft Sponge Sensor for Multimodal Sensing and Distinguishing of Pressure, Strain, and Temperature. ACS Appl. Mater. Interfaces 2022, 14, 9570–9578. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Wang, C.F.; Wei, R.L.; He, J.Q.; Li, J.; Liu, X.H.; Huang, F.C.; Ge, S.P.; Tao, J.; Yuan, Z.Q.; et al. Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications. ACS Nano 2022, 16, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.H.; Ma, L.Y.; Hou, C.; Meng, Z.H.; Guo, W.X.; Yu, W.D.; Yu, R.; Hu, F.; Liu, X.Y. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing. Small 2019, 15, 1901558. [Google Scholar] [CrossRef]
- Wang, J.C.; Chen, R.; Ji, D.S.; Xu, W.J.; Zhang, W.Z.; Zhang, C.; Zhou, W.; Luo, T. Integrating In-Plane Thermoelectricity and Out-Plane Piezoresistivity for Fully Decoupled Temperature-Pressure Sensing. Small 2023, 20, 2307800. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.H.; Wu, Q.; Sun, Q.S.; Zhou, X.Y.; Cheng, L.; Zhang, S.Y.; Yuan, Y.P.; Zhang, Z.W.; Ma, J.Y.; Zhang, Y.P.; et al. Biomolecule-friendly conducting PEDOT interface for long-term bioelectronic devices. Sens. Actuators B Chem. 2022, 373, 132703. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Devi, B.; Sudha, P.; Venkatesan, J.; Anil Synthesis, S. Characterization and applications of nanochitosan/sodium alginate/microcrystalline cellulose film. J. Nanomed. Nanotechnol. 2016, 7, 2. [Google Scholar]
- Zheng, P.Y.; Ye, C.C.; Wang, X.S.; Chen, K.-F.; An, Q.-F.; Lee, K.-R.; Gao, G.R. Poly (sodium vinylsulfonate)/chitosan membranes with sulfonate ionic cross-linking and free sulfate groups: Preparation and application in alcohol dehydration. J. Membr. Sci. 2016, 510, 220–228. [Google Scholar] [CrossRef]
- Ozarkar, S.; Jassal, M.; Agrawal, A.K. pH and electrical actuation of single walled carbon nanotube/chitosan composite fibers. Smart Mater. Struct. 2008, 17, 055016. [Google Scholar] [CrossRef]
- Huang, T.C.; Wei, R.L.; Hua, Q.L.; Yuan, Z.Q.; Shen, G.Z. A smart sponge with pressure–temperature dual-mode sensing for packaging and transportation. Chem. Eng. J. 2024, 499, 156292. [Google Scholar] [CrossRef]
- Gao, X.Z.; Gao, F.L.; Liu, J.; Li, Y.J.; Wan, P.B.; Yu, Z.Z.; Li, X.F. Self-Powered Resilient Porous Sensors with Thermoelectric Poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate) and Carbon Nanotubes for Sensitive Temperature and Pressure Dual-Mode Sensing. ACS Appl. Mater. Interface. 2022, 14, 43783–43791. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Zhong, W.; Luo, M.; Wang, W.; Qing, X.; Lu, Y.; Liu, Q.; Liu, K.; Wang, Y.; et al. Large-Area, Wearable, Self-Powered Pressure-Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sens. 2020, 5, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.C.; Li, J.H.; Wu, F.M.; Lu, Z.; Deng, C.H. A dual function flexible sensor for independent temperature and pressure sensing. Chem. Eng. J. 2024, 491, 152135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Q.; Zhang, Z. Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure–Temperature Detection. Micromachines 2025, 16, 92. https://doi.org/10.3390/mi16010092
Wang Y, Zhang Q, Zhang Z. Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure–Temperature Detection. Micromachines. 2025; 16(1):92. https://doi.org/10.3390/mi16010092
Chicago/Turabian StyleWang, Ying, Qingchao Zhang, and Zhidong Zhang. 2025. "Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure–Temperature Detection" Micromachines 16, no. 1: 92. https://doi.org/10.3390/mi16010092
APA StyleWang, Y., Zhang, Q., & Zhang, Z. (2025). Dual-Mode Textile Sensor Based on PEDOT:PSS/SWCNTs Composites for Pressure–Temperature Detection. Micromachines, 16(1), 92. https://doi.org/10.3390/mi16010092