Fine-Tuning of Optical Resonance Wavelength of Surface-Micromachined Optical Ultrasound Transducer Arrays for Single-Wavelength Light Source Readout
<p>(<b>a</b>) The cross-section of a SMOUT element, the top DBR diaphragm (constructed by multi-layer SiN/SiO) of which is vibrated by the impinging ultrasound wave; (<b>b</b>) the SMOUT reflectance spectrum shifted by the top diaphragm vibration, where <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </semantics></math> are the ORW and interrogation wavelength, respectively.</p> "> Figure 2
<p>SMOUT readout (<b>a</b>) in serial with a single beam (with low optical power) and (<b>b</b>) in parallel with multiple beams (with high overall optical power).</p> "> Figure 3
<p>(<b>a</b>) Four representative SMOUT arrays (a, b, c, and d) fabricated on different substrates in one batch or different batches; (<b>b</b>) reflectance spectra and ORWs (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mi mathvariant="normal">a</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mi mathvariant="normal">b</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mi mathvariant="normal">c</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mi mathvariant="normal">d</mi> </mrow> </msub> </mrow> </semantics></math> for a, b, c, and d array, respectively) before the tuning; (<b>c</b>) uniform reflectance spectra and ORWs after the tuning (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">λ</mi> </mrow> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">D</mi> </mrow> </msub> </mrow> </semantics></math>: the output wavelength of the high-power non-tunable LD).</p> "> Figure 4
<p>(<b>a</b>) Pressure-induced deflection and cavity length changes and (<b>b</b>) the corresponding ORW shifts due to coating or etching the top diaphragm of the SMOUT element.</p> "> Figure 5
<p>COMSOL simulation of ORW tuning by coating or etching the top DBR diaphragm: (<b>a</b>) the FEM model built in COMSOL Multiphysics; (<b>b</b>) cross-section view of the simulated pressure-deflected diaphragm before tuning; (<b>c</b>) spectrum shifts with a −10 nm overall ∆ORW and (<b>d</b>) an average tuning rate of −0.8 nm per 100 nm by LTO removal; (<b>e</b>) spectrum shifts with a +6.2 nm overall ∆ORW and (<b>f</b>) an average tuning rate of +1.6 nm per 100 nm by SiN deposition.</p> "> Figure 5 Cont.
<p>COMSOL simulation of ORW tuning by coating or etching the top DBR diaphragm: (<b>a</b>) the FEM model built in COMSOL Multiphysics; (<b>b</b>) cross-section view of the simulated pressure-deflected diaphragm before tuning; (<b>c</b>) spectrum shifts with a −10 nm overall ∆ORW and (<b>d</b>) an average tuning rate of −0.8 nm per 100 nm by LTO removal; (<b>e</b>) spectrum shifts with a +6.2 nm overall ∆ORW and (<b>f</b>) an average tuning rate of +1.6 nm per 100 nm by SiN deposition.</p> "> Figure 6
<p>Fabrication process of a SMOUT array: (<b>a</b>) PECVD of the bottom DBR on a glass substrate; (<b>b</b>) RF sputtering and lithography patterning of a sacrificial layer on the bottom DBR; (<b>c</b>) PECVD of the top DBR; (<b>d</b>) etching holes opened through the top DBR by RIE to partially expose the sacrificial layer; (<b>e</b>) wet etching of the sacrificial layer to release the top DBR as the diaphragm, which is still linked to the bottom DBR at the edges; (<b>f</b>) LPCVD of LTO for cavity sealing in a vacuum; ORW tuning by (<b>g</b>) LTO etching or (<b>h</b>) SiN PECVD; (<b>i</b>) a photo (under the microscope) of the tuned SMOUT array after LTO wet etching; and (<b>j</b>) a zoom-in view of one SMOUT element with four etching holes at the corners.</p> "> Figure 7
<p>(<b>a</b>) Reflectance spectrum shifts with overall −12 nm ∆ORW and (<b>b</b>) an average tuning rate of −1.0 nm per 100 nm by LTO removal. (<b>c</b>) The spectrum shifts with overall +7 nm ∆ORW and (<b>d</b>) an average tuning rate of +1.7 nm per 100 nm by SiN deposition. The error bars in (<b>b</b>,<b>d</b>) indicate the ORW deviation among the five tested elements.</p> "> Figure 8
<p>The LD-based setup for characterizing the ORW-tuned SMOUT array (Circ: fiber circulator; FC: fiber collimator; DM: dichroic mirror; BS: beam sampler; PD: photodetector; P/R: pulser/receiver; DAQ: data acquisition board; OL: objective lens; MR: mirror).</p> "> Figure 9
<p>(<b>a</b>) The map and (<b>b</b>) corresponding histogram showing spatial distribution of signal amplitude from elements in the 1.2 × 1.2 <math display="inline"><semantics> <mrow> <mi mathvariant="normal">c</mi> <msup> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> center region of the SMOUT array.</p> "> Figure 10
<p>(<b>a</b>) NEP map of nine SMOUT elements within the central 12 × 12 <math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <msup> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> area of the ORW-tuned array; (<b>b</b>) the measured linearity of the ultrasound response of the SMOUT array. Error bars in (<b>b</b>) indicate the deviation in the signal amplitude among different elements.</p> "> Figure 11
<p>(<b>a</b>) A typical PA response of an element from black human hair as the target; (<b>b</b>) the FFT spectrum of the PA signal in (<b>a</b>) to characterize the frequency response of the tuned SMOUT array.</p> "> Figure 12
<p>Fluctuations in the normalized signal amplitude received by the tuned SMOUT array due to (<b>a</b>) ambient temperature drift from 25 °C to 55 °C and (<b>b</b>) continuous immersion in water for one week. Error bars indicate the deviation in the signal amplitude among different elements.</p> "> Figure 13
<p>Imaging setup for PACT experiments.</p> "> Figure 14
<p>(<b>a</b>) Imaging setup for 2D PACT with a strand of black hair as the target, where the scanning path of the interrogation laser spot is marked by the yellow dashed arrow; (<b>b</b>) reconstructed B-scan image from the 1D scanning; (<b>c</b>) reconstructed 2D image of the black hair, the profile of which along (<b>d</b>) the Z and (<b>e</b>) X axes is used to evaluate the axial and lateral resolution, respectively. Red arrows in (<b>a</b>) represent 10 mm length in the corresponding axes.</p> "> Figure 14 Cont.
<p>(<b>a</b>) Imaging setup for 2D PACT with a strand of black hair as the target, where the scanning path of the interrogation laser spot is marked by the yellow dashed arrow; (<b>b</b>) reconstructed B-scan image from the 1D scanning; (<b>c</b>) reconstructed 2D image of the black hair, the profile of which along (<b>d</b>) the Z and (<b>e</b>) X axes is used to evaluate the axial and lateral resolution, respectively. Red arrows in (<b>a</b>) represent 10 mm length in the corresponding axes.</p> "> Figure 15
<p>(<b>a</b>) Three dot-shaped pencil leads as imaging targets (marked by red dashed circles) for 3D PACT; (<b>b</b>) the reconstructed 3D image of the targets (marked by white dashed circles) after 2D scanning the central 3 × 3 <math display="inline"><semantics> <mrow> <mi mathvariant="normal">c</mi> <msup> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> region of the tuned SMOUT array. Red arrows in (<b>a</b>,<b>b</b>) indicate 10 mm length in the corresponding axes.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Tuning Mechanism
2.2. Simulation
2.3. Fabrication and Tuning
3. Testing and Results
3.1. Testing Setup
3.2. Uniformity
3.3. Noise Equivalent Pressure and Linearity
3.4. Frequency Response
3.5. Stability
4. Imaging Experiment
4.1. Imaging Setup and Data Acquisition
4.2. Two-Dimensional Imaging Results
4.3. Three-Dimensional Imaging Results
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.V. Photoacoustic Imaging and Spectroscopy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Wang, L.V.; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yao, J.; Wang, L.V. Photoacoustic tomography: Principles and advances. Electromagn. Waves 2014, 147, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zou, J. Acoustic-resolution photoacoustic microscopy based on an optically transparent focused transducer with a high numerical aperture. Opt. Lett. 2021, 46, 3280–3283. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Choi, S.; Kim, C. Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed. Eng. Lett. 2022, 12, 19–35. [Google Scholar] [CrossRef]
- Lin, L.; Hu, P.; Tong, X.; Na, S.; Cao, R.; Yuan, X.; Garrett, D.C.; Shi, J.; Maslov, K.; Wang, L.V. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat. Commun. 2021, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Westerveld, W.J.; Mahmud-UI-Hasan, M.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. [Google Scholar] [CrossRef]
- Shnaiderman, R.; Wissmeyer, G.; Ülgen, O.; Mustafa, Q.; Chmyrov, A.; Ntziachristos, V. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 2020, 585, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zou, J. Large-scale surface-micromachined optical ultrasound transducer (SMOUT) array for photoacoustic computed tomography. Opt. Express 2022, 30, 19069–19080. [Google Scholar] [CrossRef] [PubMed]
- Hazan, Y.; Nagli, M.; Levi, A.; Rosenthal, A. Miniaturized ultrafast detector arrays in silicon photonics using pulse transmission amplitude monitoring. Opt. Lett. 2022, 47, 5660–5663. [Google Scholar] [CrossRef] [PubMed]
- Bisht, P.B. Chapter 9 The Fabry–Pérot resonator. In An Introduction to Photonics and Laser Physics with Applications; IOP Publishing Ltd., 2022; pp. 9–1–9–17. Available online: https://iopscience.iop.org/book/mono/978-0-7503-5226-0/chapter/bk978-0-7503-5226-0ch9 (accessed on 1 August 2022).
- Reflectivity and Transmissivity through Layered, Lossy Media: A User-Friendly Approach. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA389099.pdf (accessed on 15 February 2001).
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhang, C.; Zhang, H.; Xie, D.; Jin, Y. Spatial resolution in photoacoustic computed tomography. Rep. Prog. Phys. 2021, 84, 036701. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, L.V. Perspective on fast-evolving photoacoustic tomography. J. Biomed. Opt. 2021, 26, 060602. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Fang, C.; Zou, J. Fine-Tuning of Optical Resonance Wavelength of Surface-Micromachined Optical Ultrasound Transducer Arrays for Single-Wavelength Light Source Readout. Micromachines 2024, 15, 1111. https://doi.org/10.3390/mi15091111
Yan Z, Fang C, Zou J. Fine-Tuning of Optical Resonance Wavelength of Surface-Micromachined Optical Ultrasound Transducer Arrays for Single-Wavelength Light Source Readout. Micromachines. 2024; 15(9):1111. https://doi.org/10.3390/mi15091111
Chicago/Turabian StyleYan, Zhiyu, Cheng Fang, and Jun Zou. 2024. "Fine-Tuning of Optical Resonance Wavelength of Surface-Micromachined Optical Ultrasound Transducer Arrays for Single-Wavelength Light Source Readout" Micromachines 15, no. 9: 1111. https://doi.org/10.3390/mi15091111
APA StyleYan, Z., Fang, C., & Zou, J. (2024). Fine-Tuning of Optical Resonance Wavelength of Surface-Micromachined Optical Ultrasound Transducer Arrays for Single-Wavelength Light Source Readout. Micromachines, 15(9), 1111. https://doi.org/10.3390/mi15091111