Nonlinear Optical Response of Au/CsPbI3 Quantum Dots and Its Laser Modulation Characteristics at 2.7 μm
<p>(<b>a</b>) Normalized photoluminescence spectrum (PL) (red line) and absorption spectrum (blue line) for the CsPbI<sub>3</sub> perovskite QDs’ dispersion; (<b>b</b>) CsPbI<sub>3</sub>-Au perovskite QDs.</p> "> Figure 2
<p>(<b>a</b>) Transmission electron microscopy (TEM) image of CsPbI<sub>3</sub> perovskite QDs and (<b>d</b>) CsPbI<sub>3</sub>-Au perovskite QDs; elemental mapping of (<b>b</b>) I, (<b>c</b>) Pb, (<b>e</b>) Cs, and (<b>f</b>) Au.</p> "> Figure 3
<p>(<b>a</b>,<b>c</b>) Open-aperture Z-scan experimental results of CsPbI<sub>3</sub> perovskite QDs and CsPbI<sub>3</sub>-Au perovskite QDs, respectively, (<b>b</b>,<b>d</b>) and nonlinear transmission versus intensity of CsPbI<sub>3</sub> and CsPbI<sub>3</sub>-Au, respectively.</p> "> Figure 4
<p>Transmittance of CsPbI<sub>3</sub> QDs SA and Au-doped CsPbI<sub>3</sub> SA at 2.7 μm; inset: magnified view of transmittance of CsPbI<sub>3</sub> QDs SA and Au-doped CsPbI<sub>3</sub> SA in the range of 2400–3000 nm.</p> "> Figure 5
<p>Experimental scheme of the passively Q-switched Er:YAP laser based on the CsPbI<sub>3</sub> Au-doped QDs SA.</p> "> Figure 6
<p>Thermal focal length of Er:YAP crystal versus pump power.</p> "> Figure 7
<p>(<b>a</b>) Average output power of the Er:YAP laser versus various pump power for continuous wave (CW) operation using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> = 1% and 4%; (<b>b</b>) average output power of the Q-switched operation versus diverse incident power using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> = 1% and 4%; inset of (<b>a</b>,<b>b</b>) the laser spectrum at wavelengths of 2731.0 nm and 2730.8 nm, respectively; the passively Q-switched Er:YAP laser related parameters versus the absorbed pump power, (<b>c</b>) pulse width, (<b>d</b>) repetition rate, (<b>e</b>) peak power, and (<b>f</b>) pulse energy correspond to different saturated absorbers.</p> "> Figure 8
<p>Passively Q-switched pulse trains and single waveform in pulse trains of (<b>a</b>) CsPbI<sub>3</sub> SA and (<b>b</b>) Au-doped CsPbI<sub>3</sub> SA using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> = 1%; (<b>c</b>) CsPbI<sub>3</sub> SA and (<b>d</b>) Au-doped CsPbI<sub>3</sub> SAs using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> = 4% under pump power of 4.6 W.</p> "> Figure 9
<p>(<b>a</b>) Average output power fluctuations over time. (<b>b</b>) Beam quality of a passively Q-switched Er:YAP laser at an absorbed pump power of 4.6 W.</p> ">
Abstract
:1. Introduction
2. Material Synthesis and Characterization
2.1. Preparation and Characterization of CsPbI3 QDs
2.2. Properties of CsPbI3 QDs Saturable Absorber
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Godard, A. Infrared (2–12 μm) solid-state laser sources: A review. Comptes Rendus Phys. 2007, 8, 1100–1128. [Google Scholar] [CrossRef]
- Ren, T.; Wu, C.; Yu, Y.; Dai, T.; Chen, F.; Pan, Q. Development Progress of 3–5 μm Mid-Infrared Lasers: OPO, Solid-State and Fiber Laser. Appl. Sci. 2021, 11, 11451. [Google Scholar] [CrossRef]
- Švejkar, R.; Šulc, J.; Jelínková, H. Er-doped crystalline active media for~3 μm diode-pumped lasers. Prog. Quantum Electron. 2020, 74, 100276. [Google Scholar] [CrossRef]
- Fleischman, Z.D.; Merkle, L.D.; Newburgh, G.A.; Dubinskii, M. Spectroscopic analysis of efficient laser material Ho3+:YVO4. Opt. Mater. Express 2013, 3, 1176–1186. [Google Scholar] [CrossRef]
- Zhang, L.; Loiko, P.; Serres, J.M.; Kifle, E.; Lin, H.; Zhang, G.; Vilejshikova, E.; Dunina, E.; Kornienko, A.; Fomicheva, L.; et al. Growth, spectroscopy and first laser operation of monoclinic Ho3+:MgWO4 crystal. J. Lumin. 2019, 213, 316–325. [Google Scholar] [CrossRef]
- Pan, Z.; Loiko, P.; Wang, Y.; Zhao, Y.; Yuan, H.; Tang, K.; Dai, X.; Cai, H.; Serres, J.M.; Slimi, S.; et al. Disordered Tm3+, Ho3+-codoped CNGG garnet crystal: Towards efficient laser materials for ultrashort pulse generation at~2 μm. J. Alloys Compd. 2021, 853, 157100. [Google Scholar] [CrossRef]
- You, Z.; Li, J.; Wang, Y.; Chen, H.; Zhu, Z.; Tu, C. Spectroscopic and laser properties of Er:LuGG crystal at∼2.8 μm. Appl. Phys. Express 2019, 12, 52019. [Google Scholar] [CrossRef]
- Stoneman, R.C.; Esterowitz, L. Efficient resonantly pumped 2.8-μm Er3+:GSGG laser. Opt. Lett. 1992, 17, 816–818. [Google Scholar] [CrossRef]
- Shen, B.; Kang, H.; Chen, P.; Liang, J.; Ma, Q.; Fang, J.; Sun, D.; Zhang, Q.; Yin, S.; Yan, X.; et al. Performance of continuous-wave laser-diode side-pumped Er: YSGG slab lasers at 2.79 μm. Appl. Phys. B 2015, 121, 511–515. [Google Scholar] [CrossRef]
- Dergachev, A.; Moulton, P.F. Tunable CW Er: YLF Diode-Pumped Laser. In Advanced Solid-State Photonics; Optical Society of America: Washington, WA, USA, 2003. [Google Scholar] [CrossRef]
- Quan, C.; Sun, D.; Zhang, H.; Luo, J.; Hu, L.; Han, Z.; Dong, K.; Chen, Y.; Cheng, M. 13-W and 1000-Hz of a 2.7-microm laser on the 968 nm LD side-pumped Er: YAP crystal with concave end-faces. Opt. Express 2021, 29, 21655–21663. [Google Scholar] [CrossRef]
- Weber, M.J.; Bass, M.; Andringa, K.; Monchamp, R.R.; Comperchio, E. Czochralski growth and properties of Yalo3 laser crystals. Appl. Phys. Lett. 1969, 15, 342–345. [Google Scholar] [CrossRef]
- Quan, C.; Sun, D.; Luo, J.; Zhang, H.; Fang, Z.; Zhao, X.; Hu, L.; Cheng, M.; Zhang, Q.; Yin, S. 2.7 μm dual-wavelength laser performance of LD end-pumped Er: YAP crystal. Opt. Express 2018, 26, 28421–28428. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cui, N.; Wang, Q.; Dong, L.; Liu, S.; Sun, D.; Zhang, H.; Li, D.; Zhang, B.; He, J. Highly efficient continuous-wave and ReSe2Q-switched∼3 μm dual-wavelength Er: YAP crystal lasers. Opt. Lett. 2019, 44, 2839–2842. [Google Scholar] [CrossRef]
- Cai, E.; Xu, J.; Xia, Y.; Hao, L.; Zhang, Q.; Zhang, S.; Sun, D.; Teng, L.; Lou, F.; Wang, M.; et al. Zirconium telluride saturable absorber for Er: YAP dual-wavelength ultrafast laser at 3 μm. Opt. Laser Technol. 2022, 155, 108451. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, F.; Wang, C.; Jia, M.; Zhao, X.; Liu, Z.; Ge, Y.; Zhang, Y.; Zhang, H. Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. Adv. Mater. 2021, 33, 2004446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hu, Z.; Li, Y.; Xu, J.; Tang, X.; Tang, Y. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser. Appl. Phys. Lett. 2016, 108, 261108. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Yang, T.; Wang, Z.; Lin, H.; Xu, Y.; Li, L.; Mu, H.; Shivananju, B.N.; Zhang, Y.; et al. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Appl. Mater. Interfaces 2017, 9, 12759–12765. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhang, C.; Zhou, Y.; Miao, X.; Zong, T.; Gu, M.; Zhan, Z.; Chen, D.; Ma, H.; Gui, W.; et al. High-Stability Hybrid Organic-Inorganic Perovskite (CH3NH3PbBr3) in SiO2 Mesopores: Nonlinear Optics and Applications for Q-Switching Laser Operation. Nanomater 2021, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, H.; Xu, B.; Zhang, S.; Cai, Z.; Wang, J.; Zhang, L. CsPbBr3 perovskite quantum dots: Saturable absorption properties and passively Q-switched visible lasers. Photonics Res. 2017, 5, 457–460. [Google Scholar] [CrossRef]
- Otero-Martinez, C.; Garcia-Lojo, D.; Pastoriza-Santos, I.; Perez-Juste, J.; Polavarapu, L. Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No-Confinement to 3D and 1D Quantum Confinement. Angew. Chem. Int. Ed. Engl. 2021, 60, 26677–26684. [Google Scholar] [CrossRef]
- Ramar, V.; Balasubramanian, K. Charge transfer induced tunable bandgap and enhanced saturable absorption behavior in rGO/WO3 composites. Appl. Phys. A 2018, 124, 779. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Yan, Z.; Guo, L.; Fan, X.; Lou, F.; Wang, M.; Gao, P.; Guo, G.; Li, T. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr:LLF laser at 2.95 µm. Opt. Mater. Express 2018, 8, 1213–1220. [Google Scholar] [CrossRef]
- Ma, L.; Li, S.; Wang, H. Enhanced nonlinear optical properties of RGO via Au modification: Application for Q-switched waveguide laser. Opt. Mater. Express 2021, 11, 1583–1591. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Feng, T.; Zhao, S.; Qiao, W. Optical modulation properties of the Ni-based layered double hydroxides for dual-wavelength Q-switched Er:YAP laser at 2.7 μm. Opt. Mater. 2023, 137, 113499. [Google Scholar] [CrossRef]
- Kong, X.; Hu, X.; Qi, C.; Du, L.; Wang, M.; Liu, Q.; Zhang, S. Two-dimensional tin diselenide as the saturable absorber for passively Q-switched Er: YAP 3 μm solid-state laser. Laser Phys. 2023, 33, 125802. [Google Scholar] [CrossRef]
- Shang, P.; Bai, L.; Wang, S.; Cai, D.; Li, B. Research progress on thermal effect of LD pumped solid state laser. Opt. Laser Technol. 2023, 157, 108640. [Google Scholar] [CrossRef]
- Shi, C.; Huang, H.; Li, M.; Bao, Y.; Li, Z. Passively Q-switched 3 μm erbium-doped solid state lasers using gold nanorods as broadband saturable absorber. Opt. Laser Technol. 2023, 160, 109095. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Wang, X.; Lv, M.; Wang, M.; Cai, E.; Hao, L.; Jiang, S.; Hartl, I.; Liu, J. Nonlinear optical properties and laser modulation of gold non-covalently doped all-inorganic perovskite. In Proceedings of the Advanced Lasers, High-Power Lasers, and Applications XIII, Online, China, 5–11 December 2022; pp. 121–127. [Google Scholar]
- Kawase, H.; Uehara, H.; Chen, H.; Yasuhara, R. Passively Q-switched 2.9 μm Er: YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express 2019, 12, 102006. [Google Scholar] [CrossRef]
- Huang, L.; Gu, J.; Wang, Z.; Wu, X.; Liu, J. Novel zinc-doped carbon nitride (Zn:C3N4) modulated short-pulsed Er:YAP laser in the mid-infrared region. Opt. Commun. 2024, 550, 129944. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, F.; Chen, B.; Zhao, Y.; Cui, N.; Sun, D.; Liu, S.; Zhang, Y.; Zhang, H.; Zhang, H. Nonlinear optical property and mid-infrared Q-switched laser application at 2.8μm of PtSe2 material. Opt. Laser Technol. 2021, 139, 106983. [Google Scholar] [CrossRef]
- Xing, T.; Wang, X.; Ou, Z.; Guo, J.; Sun, D.; Chen, H.; Wang, X.; Chen, K.; Gu, Y. Peak-power of 25 W passively Q-switched∼2.8 μm Er: YAP bulk laser based on a reflective TaSe2 saturable absorber mirror. Opt. Laser Technol. 2024, 169, 110051. [Google Scholar] [CrossRef]
- Kawase, H.; Yasuhara, R. 2.92-microm high-efficiency continuous-wave laser operation of diode-pumped Er: YAP crystal at room temperature. Opt. Express 2019, 27, 12213–12220. [Google Scholar] [CrossRef] [PubMed]
Er:YAP | SA | Slope Efficiency [%] | Pulse Width [ns] | Repetition Rate [kHz] | Ref |
---|---|---|---|---|---|
5 at. % | Gold nanorods | 6.4 | 313.2 | 196.8 | [28] |
5 at. % | Graphene | 13 | 460 | 114 | [30] |
5 at. % | Zn:C3N4 | 162.5 | 192.9 | [31] | |
10 at. % | PtSe2 | 14 | 141.8 ± 1.4 | 296.2 ± 3.8 | [32] |
10 at. % | ZrTe5 | 4.2 | 169 | 446 | [15] |
10 at. % | NiV-LDH | 6.9 | 141 | 295 | [25] |
10 at. % | NiCo-LDH | 5.8 | 230 | 198 | [25] |
10 at. % | SnSe2 | 7.18 | 198 | 317 | [26] |
10 at. % | ReSe2 | 14.8 | 202.8 | 244.6 | [14] |
15 at. % | TaSe2 | 11.5 | 264 | 105.5 | [33] |
10 at. % | CsPbI3 | 5.77 | 198 | 313 | This work |
10 at. % | CsPbI3-Au | 6.96 | 185 | 480 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, M.; Zhao, J.; Guo, L.; Zhang, Y.; Zhao, Q.; Teng, L.; Wang, M.; Zhang, S.; Wang, X. Nonlinear Optical Response of Au/CsPbI3 Quantum Dots and Its Laser Modulation Characteristics at 2.7 μm. Micromachines 2024, 15, 1043. https://doi.org/10.3390/mi15081043
Lv M, Zhao J, Guo L, Zhang Y, Zhao Q, Teng L, Wang M, Zhang S, Wang X. Nonlinear Optical Response of Au/CsPbI3 Quantum Dots and Its Laser Modulation Characteristics at 2.7 μm. Micromachines. 2024; 15(8):1043. https://doi.org/10.3390/mi15081043
Chicago/Turabian StyleLv, Mengqi, Jin Zhao, Leilei Guo, Yanxu Zhang, Qiuling Zhao, Lihua Teng, Maorong Wang, Shuaiyi Zhang, and Xia Wang. 2024. "Nonlinear Optical Response of Au/CsPbI3 Quantum Dots and Its Laser Modulation Characteristics at 2.7 μm" Micromachines 15, no. 8: 1043. https://doi.org/10.3390/mi15081043
APA StyleLv, M., Zhao, J., Guo, L., Zhang, Y., Zhao, Q., Teng, L., Wang, M., Zhang, S., & Wang, X. (2024). Nonlinear Optical Response of Au/CsPbI3 Quantum Dots and Its Laser Modulation Characteristics at 2.7 μm. Micromachines, 15(8), 1043. https://doi.org/10.3390/mi15081043