Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm
<p>Manufacturing process of the flexible pressure sensors, consisting of (<b>a</b>) preparing the electrode layer, (<b>b</b>) preparing the sensing layer, (<b>c</b>) assembling sensor, (<b>d</b>) thickness of the sensor, and (<b>e</b>) real image of the final flexible sensor.</p> "> Figure 2
<p>Scanning electron microscope images of the sensor: (<b>a</b>) sensing layer at 100 µm and 50 µm before dipping in CNTs, (<b>b</b>) sensing layer at 100 µm and 50 µm after dipping CNTs, and (<b>c</b>) assembled sensor at the top view and bottom view.</p> "> Figure 3
<p>Characteristics of the sensor: (<b>a</b>) working principle, (<b>b</b>) universal testing machine, (<b>c</b>) current–voltage graphical curves, (<b>d</b>) resistance change under pressure, (<b>e</b>) hysteresis, and (<b>f</b>) resistance change at different frequencies.</p> "> Figure 4
<p>(<b>a</b>) Resistance change at different bending radii, (<b>b</b>) response and recovery times, (<b>c</b>) durability under loading/unloading cycles, and (<b>d</b>) working when dipped under water.</p> "> Figure 5
<p>(<b>a</b>) Respiration checking with the embedded system, (<b>b</b>) smart mask with the flexible sensor, and (<b>c</b>) signal processing board with nRF52 module.</p> "> Figure 6
<p>Respiratory monitoring system, consisting of (<b>a</b>) different breathing signals, (<b>b</b>) smart mask for recognizing respiratory, (<b>c</b>) initial and smoothing signal, and (<b>d</b>) confusion matrices.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Embedded Health-Monitoring System with Flexible Sensor and Random Forest Algorithm
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishra, S.; Khouqeer, G.A.; Aamna, B.; Alodhayb, A.; Ali Ibrahim, S.J.; Hooda, M.; Jayaswal, G. A Review: Recent Advancements in Sensor Technology for Non-Invasive Neonatal Health Monitoring. Biosens. Bioelectron. X 2023, 14, 100332. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, F.; Sun, Z.; Guo, X.; He, T.; Lee, C. Artificial Intelligence-Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Adv. Intell. Syst. 2022, 4, 2100228. [Google Scholar] [CrossRef]
- Holt, S. Virtual Reality, Augmented Reality and Mixed Reality: For Astronaut Mental Health; and Space Tourism, Education and Outreach. Acta Astronaut. 2023, 203, 436–446. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Wang, M. A Meta-Analytic Review on Incorporating Virtual and Augmented Reality in Museum Learning. Educ. Res. Rev. 2022, 36, 100454. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, S.; Yu, J.; Shao, H.; Wen, H.; Zhang, H.; Xia, Z.; Zhang, Z.; Lee, C. Machine Learning-Augmented Wearable Triboelectric Human-Machine Interface in Motion Identification and Virtual Reality. Nano Energy 2022, 103, 107766. [Google Scholar] [CrossRef]
- Singh, M.; Chauhan, M.; Mishra, Y.K.; Wallen, S.L.; Kaur, G.; Kaushik, A.; Chaudhary, G.R. Novel Synthesis of Amorphous CP@HfO2 Nanomaterials for High-Performance Electrochemical Sensing of 2-Naphthol. J. Nanostruct. Chem. 2023, 13, 423–438. [Google Scholar] [CrossRef]
- Olorunyomi, J.F.; Teng Geh, S.; Caruso, R.A.; Doherty, C.M. Metal–Organic Frameworks for Chemical Sensing Devices. Mater. Horiz. 2021, 8, 2387–2419. [Google Scholar] [CrossRef]
- Arabi, M.; Chen, L. Technical Challenges of Molecular-Imprinting-Based Optical Sensors for Environmental Pollutants. Langmuir 2022, 38, 5963–5967. [Google Scholar] [CrossRef]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent Advances in Machine Learning for Fiber Optic Sensor Applications. Adv. Intell. Syst. 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, B.; Zhang, W.; Qu, G.; Jin, S.; Li, X.; Nie, Z.; Zhou, H. Highly sensitive active-powering pressure sensor enabled by integration of double-rough surface hydrogel and flexible batteries. NPJ Flex. Electron. 2022, 6, 92. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Q.; Ding, L.; Shi, C.; Wang, Q.; Niu, Y.; Xu, C. Carbon Black/Multi-Walled Carbon Nanotube-Based, Highly Sensitive, Flexible Pressure Sensor. ACS Omega 2022, 7, 44428–44437. [Google Scholar] [CrossRef]
- Manasa, G.; Mascarenhas, R.J.; Shetti, N.P.; Malode, S.J.; Mishra, A.; Basu, S.; Aminabhavi, T.M. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS Appl. Bio Mater. 2022, 5, 945–970. [Google Scholar] [CrossRef]
- Lv, P.; Qian, J.; Yang, C.; Liu, T.; Wang, Y.; Wang, D.; Huang, S.; Cheng, X.; Cheng, Z. Flexible All-Inorganic Sm-Doped PMN-PT Film with Ultrahigh Piezoelectric Coefficient for Mechanical Energy Harvesting, Motion Sensing, and Human-Machine Interaction. Nano Energy 2022, 97, 107182. [Google Scholar] [CrossRef]
- Gupta, N.; Adepu, V.; Tathacharya, M.; Siraj, S.; Pal, S.; Sahatiya, P.; Kuila, B.K. Piezoresistive Pressure Sensor Based on Conjugated Polymer Framework for Pedometer and Smart Tactile Glove Applications. Sens. Actuators A 2023, 350, 114139. [Google Scholar] [CrossRef]
- Han, P.; Li, L.; Zhang, H.; Guan, L.; Marques, C.; Savović, S.; Ortega, B.; Min, R.; Li, X. Low-Cost Plastic Optical Fiber Sensor Embedded in Mattress for Sleep Performance Monitoring. Opt. Fiber Technol. 2021, 64, 102541. [Google Scholar] [CrossRef]
- Schutte, A.E.; Kollias, A.; Stergiou, G.S. Blood pressure and its variability: Classic and novel measurement techniques. Nat. Rev. Cardiol. 2022, 19, 643–654. [Google Scholar] [CrossRef]
- Niu, X.; Gao, X.; Liu, Y.; Liu, H. Surface bioelectric dry Electrodes: A review. Measurement 2021, 183, 109774. [Google Scholar] [CrossRef]
- Nelson, E.C.; Verhagen, T.; Noordzij, M.L. Health empowerment through activity trackers: An empirical smart wristband study. Comput. Hum. Behav. 2016, 62, 364–374. [Google Scholar] [CrossRef]
- Ambaye, A.D.; Kefeni, K.K.; Mishra, S.B.; Nxumalo, E.N.; Ntsendwana, B. Recent Developments in Nanotechnology-Based Printing Electrode Systems for Electrochemical Sensors. Talanta 2021, 225, 121951. [Google Scholar] [CrossRef]
- Mostafiz, B.; Bigdeli, S.A.; Banan, K.; Afsharara, H.; Hatamabadi, D.; Mousavi, P.; Hussain, C.M.; Keçili, R.; Ghorbani-Bidkorbeh, F. Molecularly Imprinted Polymer-Carbon Paste Electrode (MIP-CPE)-Based Sensors for the Sensitive Detection of Organic and Inorganic Environmental Pollutants: A Review. Trends Environ. Anal. Chem. 2021, 32, e00144. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Zhang, H.J.; You, X.; Yue, O. Self-Healable, High-Strength Hydrogel Electrode for Flexible Sensors and Supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 36240–36252. [Google Scholar] [CrossRef]
- Vu, C.C.; Kim, J. Simultaneous Sensing of Touch and Pressure by Using Highly Elastic e-Fabrics. Appl. Sci. 2020, 10, 989. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Li, Y.; Wang, P. Textile-Based Flexible Pressure Sensors: A Review. Polym. Rev. 2022, 62, 65–94. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Yang, G.; Huang, P.; Hu, J.-M.; Tang, Z.-H.; Li, Y.-Q.; Fu, S.-Y. Flexible Pressure Sensor with an Excellent Linear Response in a Broad Detection Range for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 3476–3485. [Google Scholar] [CrossRef] [PubMed]
- Pierre Claver, U.; Zhao, G. Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Adv. Eng. Mater. 2021, 23, 2001187. [Google Scholar] [CrossRef]
- Vu, C.C.; Kim, J. Waterproof, Thin, High-Performance Pressure Sensors-Hand Drawing for Underwater Wearable Applications. Sci. Technol. Adv. Mater. 2021, 22, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Cheng, S.-R.; Miao, Y.-J.; Li, P.; Zhang, H.-X. Graphene/Electrospun Carbon Nanofiber Sponge Composites Induced by Magnetic Particles for Mutil-Functional Pressure Sensor. Carbon 2023, 205, 454–462. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.; Sun, R.; Zhang, Y.; Gu, M.; Zhu, Y.; Tong, Y.; Liu, X.; Wang, Z.; Xia, J.; et al. Crack-Across-Pore Enabled High-Performance Flexible Pressure Sensors for Deep Neural Network Enhanced Sensing and Human Action Recognition. ACS Nano 2022, 16, 8358–8369. [Google Scholar] [CrossRef]
- Shen, J.; Guo, Y.; Fu, T.; Yao, S.; Zhou, J.; Wang, D.; Bi, H.; Zuo, S.; Wu, X.; Shi, F.; et al. Skin-Inspired Hierarchical Structure Sensor for Ultrafast Active Human–Robot Interaction. Adv. Mater. Technol. 2023, 8, 2202008. [Google Scholar] [CrossRef]
- Choudhry, N.A.; Shekhar, R.; Rasheed, A.; Arnold, L.; Wang, L. Effect of Conductive Thread and Stitching Parameters on the Sensing Performance of Stitch-Based Pressure Sensors for Smart Textile Applications. IEEE Sens. J. 2022, 22, 6353–6363. [Google Scholar] [CrossRef]
- Han, Z.; Li, H.; Xiao, J.; Song, H.; Li, B.; Cai, S.; Chen, Y.; Ma, Y.; Feng, X. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 33370–33379. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, H.; Xia, K.; Xu, Z. Hand-Drawn Variable Resistor and Strain Sensor on Paper. Microelectron. Eng. 2018, 191, 72–76. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Zhang, Y.-L.; Jiao, Z.-Z.; Han, D.-D.; Sun, H.-B. Directly Drawing High-Performance Capacitive Sensors on Copying Tissues. Nanoscale 2018, 10, 17002–17006. [Google Scholar] [CrossRef]
- Gilanizadehdizaj, G.; Aw, K.C.; Stringer, J.; Bhattacharyya, D. Facile Fabrication of Flexible Piezo-Resistive Pressure Sensor Array Using Reduced Graphene Oxide Foam and Silicone Elastomer. Sens. Actuators A 2022, 340, 113549. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y.; Yang, H.; Oh, J.H. Fabrication of Hierarchically Porous Structured PDMS Composites and Their Application as a Flexible Capacitive Pressure Sensor. Compos. Part B 2021, 211, 108607. [Google Scholar] [CrossRef]
- Ji, B.; Zhou, Q.; Chen, G.; Dai, Z.; Li, S.; Xu, Y.; Gao, Y.; Wen, W.; Zhou, B. In Situ Assembly of a Wearable Capacitive Sensor with a Spine-Shaped Dielectric for Shear-Pressure Monitoring. J. Mater. Chem. C 2020, 8, 15634–15645. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Tian, Y.; Bao, B.; Li, D. A Machine-Learning-Algorithm-Assisted Intelligent System for Real-Time Wireless Respiratory Monitoring. Appl. Sci. 2023, 13, 3885. [Google Scholar] [CrossRef]
- Vu, C.C.; Kim, J. Human motion recognition using SWCNT textile sensor and fuzzy inference system based smart wearable. Sens. Actuators A. 2018, 283, 263–272. [Google Scholar] [CrossRef]
Ref. | Principle | Thickness (µm) | Response Time (ms) | Sensitivity (kPa−1) | Water Resistance |
---|---|---|---|---|---|
[31] | Resistive | - | 200 | ~7.12 | Yes |
[22] | Capacitive | ~290 | ~41 | 0.23 | Yes |
[32] | Resistive | 150 | - | ~0.001 | No |
[33] | Capacitive | ~110 | 180/120 | ~0.14 | No |
[34] | Resistive | 1000 | - | ~0.13 | No |
[35] | Capacitive | >1000 | ~100 | 0.18 | No |
[36] | Capacitive | >1000 | ~100 | 0.0124 | No |
Ours | Resistive | 260 | 70/50 | 0.2 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, C.C.; Kim, J.; Nguyen, T.-H. Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm. Micromachines 2023, 14, 1726. https://doi.org/10.3390/mi14091726
Vu CC, Kim J, Nguyen T-H. Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm. Micromachines. 2023; 14(9):1726. https://doi.org/10.3390/mi14091726
Chicago/Turabian StyleVu, Chi Cuong, Jooyong Kim, and Thanh-Hai Nguyen. 2023. "Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm" Micromachines 14, no. 9: 1726. https://doi.org/10.3390/mi14091726
APA StyleVu, C. C., Kim, J., & Nguyen, T. -H. (2023). Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm. Micromachines, 14(9), 1726. https://doi.org/10.3390/mi14091726