Investigation on Thermally Radiative Mixed Convective Flow of Carbon Nanotubes/Al2O3 Nanofluid in Water Past a Stretching Plate with Joule Heating and Viscous Dissipation
<p>Physical configuration of the flow model.</p> "> Figure 2
<p>The flow chart of bvp4c (<b>a</b>) and HAM (<b>b</b>).</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <mi>h</mi> </mrow> </semantics></math>-curves of <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="script">F</mi> <mrow> <mo>″</mo> </mrow> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <msup> <mo>Θ</mo> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>b</b>).</p> "> Figure 4
<p>The contrast of <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="script">F</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mo>Υ</mo> <mo>)</mo> </mrow> </mrow> </semantics></math> against <span class="html-italic">M</span> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>w</mi> </mrow> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and <math display="inline"><semantics> <mrow> <mi>A</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mi>O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> nanofluid (dotted line).</p> "> Figure 5
<p>The contrast of <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mo>(</mo> <mo>Υ</mo> <mo>)</mo> </mrow> </semantics></math> against <span class="html-italic">M</span> (<b>a</b>), <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>i</mi> </mrow> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> (<b>c</b>) and <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math> (<b>d</b>) for SWCNTs (solid line), MWCNTs (dashed line) and <math display="inline"><semantics> <mrow> <mi>A</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mi>O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> nanofluid (dotted line).</p> "> Figure 6
<p>The contrast of <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mo>(</mo> <mo>Υ</mo> <mo>)</mo> </mrow> </semantics></math> against <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (<b>b</b>) for SWCNTs (solid line), MWCNTs (dashed line) and <math display="inline"><semantics> <mrow> <mi>A</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mi>O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> nanofluid (dotted line).</p> "> Figure 7
<p>The contrast of the skin friction coefficient for different combinations of <span class="html-italic">A</span> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <span class="html-italic">M</span> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases for SWCNTs (solid line), MWCNTs (dashed line) and <math display="inline"><semantics> <mrow> <mi>A</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mi>O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> nanofluid (dotted line).</p> "> Figure 8
<p>The contrast of LNN for different combinations of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>w</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases for SWCNTs (solid line), MWCNTs (dashed line) and <math display="inline"><semantics> <mrow> <mi>A</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mi>O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> nanofluid (dotted line).</p> "> Figure 9
<p>The contrast of LNN for different combinations of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases for SWCNTs (solid line), MWCNTs (dashed line) and <math display="inline"><semantics> <mrow> <mi>A</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mi>O</mi> <mn>3</mn> </msub> </mrow> </semantics></math> nanofluid (dotted line).</p> "> Figure 10
<p>The diminishing percentage of SFC for <span class="html-italic">A</span> (<b>a</b>,<b>b</b>) and <span class="html-italic">M</span> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases.</p> "> Figure 11
<p>The diminishing/improving percentage of SFC for <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases.</p> "> Figure 12
<p>The diminishing/improving percentage of LNN for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>d</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases.</p> "> Figure 13
<p>The diminishing/improving percentage of LNN for <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>c</mi> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>g</mi> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) with convective heating (<b>a</b>,<b>c</b>) and convective cooling (<b>b</b>,<b>d</b>) cases.</p> ">
Abstract
:1. Introduction
- To investigate the MHD flow over a stretchy plate inserted in a porous medium.
- The impacts of Joule heating, viscous dissipation and radiation are also added to the heat expression.
- These types of modeled problems are used in the thermal industry for designing equipment, such as the design of electric ovens, electric heaters, microelectronics, wind generators, etc.
2. Mathematical Formulation
- The time-dependent, 2D, incompressible, electrically conducting flow of CNTs past a stretchy plate is embedded in a porous medium.
- Let the -coordinate be delineated in the plate, the -coordinate is normal to it, and the flow occurs when .
- The surface of the plate has a constant temperature , which is bigger than the ambient fluid temperature .
- The fixed magnetic field of quantity B is employed in the -coordinate; see Figure 1.
- The induced magnetic field is omitted because of the small size of the Reynold’s number.
- The availability of heat consumption/generation, Joule heating, and radiation impacts are included to analyze the variations of velocity, temperature, SFC and LNN.
- The characteristics of fluids are regarded as constants.
3. Solutions
3.1. Numerical Solutions
3.2. Analytical Solutions
4. Results and Discussion
5. Conclusions
- Larger magnetic field and porosity parameters lead to declines in the fluid velocity.
- The fluid temperature is strengthened in opposition to the larger Biot number, Eckert number and radiation parameter.
- Decay in surface drag force is noted against a larger magnetic field and unsteady parameters.
- The radiation parameter leads to an improvement in the heat transfer gradient in the convective heating case, while it decays in the convective cooling case.
- The MWCNTs have higher skin friction values compared to SWCNTs and nanofluid.
- The lower heat transfer gradient appears in SWCNTs compared to MWCNTs and nanofluid.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a | |
B | |
Q | |
Abbreviations
Appendix A
References
- Imtiaz, M.; Mabood, F.; Hayat, T.; Alsaedi, A. Impact of non-Fourier heat flux in bidirectional flow of carbon nanotubes over a stretching sheet with variable thickness. Chin. J. Phys. 2022, 77, 1587–1597. [Google Scholar] [CrossRef]
- Hayat, T.; Farooq, M.; Alsaedi, A. Stagnation point flow of carbon nanotubes over stretching cylinder with slip conditions. Open Phys. 2015, 13, 188–197. [Google Scholar] [CrossRef]
- Yacob, N.A.; Dzulkifli, N.F.; Salleh, S.N.A.; Ishak, A.; Pop, I. Rotating flow in a nanofluid with CNT nanoparticles over a stretching/shrinking surface. Mathematics 2022, 10, 7. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Role of multiple solutions in flow of nanofluids with carbon nanotubes over a vertical permeable moving plate. Alex. Eng. J. 2020, 59, 763–773. [Google Scholar] [CrossRef]
- Haq, R.U.; Shahzad, F.; Al-Mdallal, Q.M. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys. 2017, 7, 57–68. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. MHD flow past a nonlinear stretching/shrinking sheet in carbon nanotubes: Stability analysis. Chin. J. Phys. 2020, 65, 436–446. [Google Scholar] [CrossRef]
- Manjunatha, P.T.; Gowda, R.J.P.; Kumar, R.N.; Suresha, S.; Sarwe, D.U. Numerical simulation of carbon nanotubes nanofluid flow over vertically moving disk with rotation. Partial. Differ. Equ. Appl. Math. 2021, 4, 100124. [Google Scholar] [CrossRef]
- Acharya, N.; Das, K.; Kundu, P.K. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: A comparative study. Appl. Nanosci. 2018, 8, 369–378. [Google Scholar] [CrossRef]
- Noranuar, W.N.N.; Mohamad, A.Q.; Shafie, S.; Khan, I.; Jiann, L.Y.; Ilias, M.R. Non-coaxial rotation flow of MHD Casson nanofluid carbon nanotubes past a moving disk with porosity effect. Ain Shams Eng. J. 2021, 12, 4099–4110. [Google Scholar] [CrossRef]
- Benos, L.; Karvelas, E.G.; Sarris, I.E. A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model. Int. J. Heat Mass Transf. 2019, 135, 548–560. [Google Scholar] [CrossRef]
- Mabood, F.; Fatunmbi, E.O.; Benos, L.; Sarris, I.E. Entropy generation in the magnetohydrodynamic Jeffrey nanofluid flow over a stretching sheet with wide range of engineering application parameters. Int. J. Appl. Comput. Math. 2022, 8, 1–18. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Sneha, K.N.; Huang, H.N. An effect of MHD and radiation on CNTS-water based nanofluids due to a stretching sheet in a Newtonian fluid. Case Stud. Therm. Eng. 2021, 28, 101462. [Google Scholar] [CrossRef]
- Shah, Z.; Bonyah, E.; Islam, S.; Gul, T. Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet. AIP Adv. 2019, 9, 015115. [Google Scholar] [CrossRef]
- Aman, S.; Khan, I.; Ismail, Z.; Salleh, M.Z.; Alshomrani, A.S.; Alghamdi, M.S. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid. AIP Adv. 2017, 7, 015036. [Google Scholar] [CrossRef]
- Sreedevi, P.; Reddy, P.S.; Chamkha, A.J. Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition. Int. J. Mech. Sci. 2018, 135, 646–655. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sreedevi, P. Effect of thermal radiation and volume fraction on carbon nanotubes based nanofluid flow inside a square chamber. Alex. Eng. J. 2020, 60, 1807–1817. [Google Scholar] [CrossRef]
- Ramzan, M.; Shah, S.R.Z.; Kumam, P.; Thounthong, P. Unsteady MHD carbon nanotubes suspended nanofluid flow with thermal stratification and nonlinear thermal radiation. Alex. Eng. J. 2020, 59, 1557–1566. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Sarris, I.E.; Lorenzini, G. Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int. J. Heat Mass Transf. 2018, 127, 1327–1337. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Sarris, I.E.; Hill, A.; Lorenzini, G.; Pop, I. An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer. Int. J. Heat Mass Transf. 2017, 105, 157–167. [Google Scholar] [CrossRef]
- Kataria, H.R.; Patel, H.R. Effects of chemical reaction and heat generation/absorption on magnetohydrodynamic (MHD) Casson fluid flow over an exponentially accelerated vertical plate embedded in porous medium with ramped wall temperature and ramped surface concentration. Propuls. Power Res. 2019, 8, 35–46. [Google Scholar] [CrossRef]
- Saba, F.; Ahmed, N.; Hussain, S.; Khan, U.; Mohyud-Din, S.T.; Darus, M. Thermal analysis of nanofluid flow over a curved stretching surface suspended by carbon nanotubes with internal heat generation. Appl. Sci. 2018, 8, 39. [Google Scholar] [CrossRef]
- Ojemeri, G.; Hamza, M.M. Heat transfer analysis of Arrhenius-controlled free convective hydromagnetic flow with heat generation/absorption effect in a micro-channel. Alex. Eng. J. 2022, 61, 12797–12811. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Rashad, A.M.; Mansour, M.A.; Armaghani, T.; Ghalambaz, M. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Phys. Fluids 2017, 29, 052001. [Google Scholar] [CrossRef]
- Khan, M.I.; Alzahrani, F. Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-forchheimer porous medium. Int. J. Hydrog. Energy 2017, 46, 1362–1369. [Google Scholar] [CrossRef]
- Gambo, J.J.; Gambo, D. On the effect of heat generation/absorption on magnetohydrodynamic free convective flow in a vertical annulus: An Adomian decomposition method. Heat Transf. 2020, 2020, 2288–2302. [Google Scholar] [CrossRef]
- Soomro, F.A.; Haq, R.U.; Khan, Z.H.; Zhang, Q. Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface. Eur. Phys. J. Plus 2017, 132, 12. [Google Scholar] [CrossRef]
- Haq, R.U.; Nadeem, S.; Khan, Z.H.; Noor, N.F.M. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys. B Condens. Matter 2015, 457, 40–47. [Google Scholar] [CrossRef]
- Upadhya, S.M.; Raju, C.S.K.; Mahesha; Saleem, S. Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux. Results Phys. 2018, 9, 779–786. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Alessa, N.; Sangeethavaanee, M.; Kayikci, S.; Namgyel, N. Mixed convection and thermally radiative flow of MHD Williamson nanofluid with Arrhenius activation energy and Cattaneo-Christov heat-mass flux. J. Math. 2021, 2021, 2490524. [Google Scholar] [CrossRef]
- Liao, S. Homotopy Analysis Method in Nonlinear Differential Equations; Higher Education Press: Berlin/Heidelberg, Germany, 2012; pp. 153–165. [Google Scholar]
- Zhao, Y.; Liao, S. On the HAM-based mathematica package BVPh for coupled nonlinear ODEs. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1479, pp. 1842–1844. [Google Scholar]
- Loganathan, K.; Alessa, N.; Kayikci, S. Heat transfer analysis of 3-D viscoelastic nanofluid flow over a convectively heated porous Riga plate with Cattaneo-Christov double flux. Front. Phys. 2021, 9, 379. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Loganathan, K.; Jain, R.; Gyeltshen, S. Darcy-Forchheimer 3D flow of glycerin-based Carbon nanotubes on a Riga plate with nonlinear thermal radiation and Cattaneo-Christov heat flux. J. Nanomater. 2022, 2022, 5286921. [Google Scholar] [CrossRef]
Physical Characteristics | SWCNTs | MWCNTs | Water | |
---|---|---|---|---|
k | 6600 | 3000 | 40 | |
2600 | 1600 | 3970 | ||
425 | 796 | 765 | 4179 |
1 | ||||
5 | ||||
10 | ||||
15 | ||||
18 | ||||
20 | ||||
25 |
1 | ||||
5 | ||||
10 | ||||
15 | ||||
18 | ||||
20 | ||||
25 |
1 | ||||
5 | ||||
10 | ||||
15 | ||||
18 | ||||
20 | ||||
25 |
0 | ||||||||||
1 | ||||||||||
0 | ||||||||||
0 | ||||||||||
0 | ||||||||||
1 | ||||||||||
0 | ||||||||||
1 | ||||||||||
2 | ||||||||||
0 | ||||||||||
0 | ||||||||||
1 | ||||||||||
0 | ||||||||||
0 | ||||||||||
0 | ||||||||||
1 | ||||||||||
0 | ||||||||||
1 | ||||||||||
2 | ||||||||||
0 | ||||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabakaran, R.; Eswaramoorthi, S.; Loganathan, K.; Sarris, I.E. Investigation on Thermally Radiative Mixed Convective Flow of Carbon Nanotubes/Al2O3 Nanofluid in Water Past a Stretching Plate with Joule Heating and Viscous Dissipation. Micromachines 2022, 13, 1424. https://doi.org/10.3390/mi13091424
Prabakaran R, Eswaramoorthi S, Loganathan K, Sarris IE. Investigation on Thermally Radiative Mixed Convective Flow of Carbon Nanotubes/Al2O3 Nanofluid in Water Past a Stretching Plate with Joule Heating and Viscous Dissipation. Micromachines. 2022; 13(9):1424. https://doi.org/10.3390/mi13091424
Chicago/Turabian StylePrabakaran, R., S. Eswaramoorthi, Karuppusamy Loganathan, and Ioannis E. Sarris. 2022. "Investigation on Thermally Radiative Mixed Convective Flow of Carbon Nanotubes/Al2O3 Nanofluid in Water Past a Stretching Plate with Joule Heating and Viscous Dissipation" Micromachines 13, no. 9: 1424. https://doi.org/10.3390/mi13091424
APA StylePrabakaran, R., Eswaramoorthi, S., Loganathan, K., & Sarris, I. E. (2022). Investigation on Thermally Radiative Mixed Convective Flow of Carbon Nanotubes/Al2O3 Nanofluid in Water Past a Stretching Plate with Joule Heating and Viscous Dissipation. Micromachines, 13(9), 1424. https://doi.org/10.3390/mi13091424