Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors
<p>Illustration of PE (reproduced with permission from references [<a href="#B40-micromachines-12-00813" class="html-bibr">40</a>,<a href="#B41-micromachines-12-00813" class="html-bibr">41</a>]), TENG (reproduced with permission from references [<a href="#B42-micromachines-12-00813" class="html-bibr">42</a>,<a href="#B43-micromachines-12-00813" class="html-bibr">43</a>]), and PE–TENG hybrid (reproduced with permission from references [<a href="#B44-micromachines-12-00813" class="html-bibr">44</a>,<a href="#B45-micromachines-12-00813" class="html-bibr">45</a>]).</p> "> Figure 2
<p>(<b>a</b>) Polarization process; (<b>b</b>) piezoelectric effect.</p> "> Figure 3
<p>Power generation principle of contact separation TENG type: (<b>i</b>) The initial state of the device; (<b>ii</b>) two contact layers are in contact; (<b>ii</b>)–(<b>iv</b>) The process of two contact layers separating; (<b>iv</b>)–(<b>ii</b>) the process of two contact layers approaching.</p> "> Figure 4
<p>(<b>a</b>) PE pressure sensor for detecting heart rate (reproduced with permission from reference [<a href="#B40-micromachines-12-00813" class="html-bibr">40</a>]); (<b>b</b>) PE pressure sensor for load measurement on a track (reproduced with permission from reference [<a href="#B64-micromachines-12-00813" class="html-bibr">64</a>]); (<b>c</b>) structure of PE pressure sensor [<a href="#B58-micromachines-12-00813" class="html-bibr">58</a>] (reproduced with permission from reference [<a href="#B40-micromachines-12-00813" class="html-bibr">40</a>]); (<b>d</b>) PE pressure sensor on sole for detecting different types of human motion (reproduced with permission from reference [<a href="#B65-micromachines-12-00813" class="html-bibr">65</a>]); (<b>e</b>) PE pressure sensor installed on racket to obtain hit data (reproduced with permission from reference [<a href="#B66-micromachines-12-00813" class="html-bibr">66</a>]).</p> "> Figure 5
<p>(<b>a</b>) Electronic skin of robot (reproduced with permission from reference [<a href="#B73-micromachines-12-00813" class="html-bibr">73</a>]); (<b>b</b>) flexible TENG pressure sensor arranged in 8 × 8 array (reproduced with permission from reference [<a href="#B74-micromachines-12-00813" class="html-bibr">74</a>]); (<b>c</b>) structure of PE pressure sensor (reproduced with permission from reference [<a href="#B43-micromachines-12-00813" class="html-bibr">43</a>]); (<b>d</b>) self-powered wearable keyboard (reproduced with permission from reference [<a href="#B43-micromachines-12-00813" class="html-bibr">43</a>]).</p> "> Figure 6
<p>(<b>a</b>) Flexible pressure sensor developed using regenerated C/BT aerogel paper-based PDMS nanocomposites (reproduced with permission from reference [<a href="#B44-micromachines-12-00813" class="html-bibr">44</a>]); (<b>b</b>) composite film comprising ferroelectric BTO NPs in PDMS polymer matrix (reproduced with permission from reference [<a href="#B80-micromachines-12-00813" class="html-bibr">80</a>]); (<b>c</b>) schematic structure of double-piezoelectric-layer-enhanced TENG (reproduced with permission from reference [<a href="#B81-micromachines-12-00813" class="html-bibr">81</a>]): (<b>i</b>) schematic structure of the device, (<b>ii</b>) detailed composition layers of top section and (<b>iii</b>) bottom section, (<b>iv</b>) the polarization direction of PVDF; (<b>d</b>) schematic diagram of using two piezoelectric layers as friction layers (reproduced with permission from reference [<a href="#B45-micromachines-12-00813" class="html-bibr">45</a>]); (<b>e</b>) representation of working principle of three-electrode hybrid sensor (reproduced with permission from reference [<a href="#B82-micromachines-12-00813" class="html-bibr">82</a>]): (<b>i</b>) representation (exploded view) of the applicability of the device onto the human skin, (<b>ii</b>) representation of the working principle of the device, (<b>iii</b>) triboelectric coupling with the human skin, (<b>iv</b>) PE-TENG hybrid contact.</p> "> Figure 7
<p>(<b>a</b>) TENG displacement sensor (reproduced with permission from reference [<a href="#B75-micromachines-12-00813" class="html-bibr">75</a>]); (<b>b</b>) TENG plane displacement sensor (reproduced with permission from reference [<a href="#B76-micromachines-12-00813" class="html-bibr">76</a>]); (<b>c</b>) TENG rotary displacement sensor (reproduced with permission from reference [<a href="#B76-micromachines-12-00813" class="html-bibr">76</a>]); (<b>d</b>) TENG high-precision displacement sensor (reproduced with permission from reference [<a href="#B102-micromachines-12-00813" class="html-bibr">102</a>]).</p> "> Figure 8
<p>Device configuration and operation mechanism of hybrid sensor (reproduced with permission from reference [<a href="#B103-micromachines-12-00813" class="html-bibr">103</a>]): (<b>a</b>) enlarged 3D view of device showing the detailed layer-by-layer structure; (<b>b</b>) photograph of device placed on table; (<b>c</b>) operation mechanism of device for position and force sensing.</p> "> Figure 9
<p>(<b>a</b>) ENDEVCO PE 3D acceleration sensor; (<b>b</b>) ENDEVCO single-axis IEPE (weight: 1 g; size: 8 × 6 × 5 mm<sup>3</sup>); (<b>c</b>) ENDEVCO 3D IEPE.</p> "> Figure 10
<p>(<b>a</b>) TENG 3D acceleration sensor (reproduced with permission from reference [<a href="#B77-micromachines-12-00813" class="html-bibr">77</a>]); (<b>b</b>) spherical TENG 3D acceleration sensor (reproduced with permission from reference [<a href="#B113-micromachines-12-00813" class="html-bibr">113</a>]); (<b>c</b>) self-powered and high sensitivity TENG acceleration sensor (reproduced with permission from reference [<a href="#B78-micromachines-12-00813" class="html-bibr">78</a>]); (<b>d</b>) self-powered 3D activity inertial sensor using hybrid sensing mechanisms (reproduced with permission from reference [<a href="#B83-micromachines-12-00813" class="html-bibr">83</a>]).</p> ">
Abstract
:1. Introduction
2. Principle and Process of PE and TENG
2.1. Piezoelectric Effect and Piezoelectric Materials of PE
2.2. Principles and Process of TENG
3. Pressure Sensors
3.1. PE Pressure Sensors
3.2. TENG Pressure Sensors
3.3. PE–TENG Hybrid Pressure Sensor
4. Displacement Sensors for Robotics
5. Space Acceleration Sensor for Robot
5.1. PE 3D Acceleration Sensor
5.2. TENG and Hybrid 3D Acceleration Sensor
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Fan, F.R.; Tang, W.; Wang, Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef]
- Zhu, G.; Pan, C.; Guo, W.; Chen, C.-Y.; Zhou, Y.; Yu, R.; Wang, Z.L. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Lett. 2012, 12, 4960–4965. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, G.H. Robotic surgery, telerobotic surgery, telepresence, and telementoring—Review of early clinical results. Surg. Endosc. 2002, 16, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Bartneck, C.; Kulic, D.; Croft, E.; Zoghbi, S. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. Int. J. Soc. Robot. 2009, 1, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zheng, P.; Huang, X.; Zhuo, H.Y.; Wu, Y.J.; Yin, Z.P.; Li, Z.; Wu, H. Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 8567–8575. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3406–3413. [Google Scholar]
- Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724. [Google Scholar] [CrossRef] [Green Version]
- Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [Google Scholar] [CrossRef]
- Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 2014, 26, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1603483. [Google Scholar] [CrossRef]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 23–30. [Google Scholar] [CrossRef]
- Yang, G.Z.; Bellingham, J.; Dupont, P.E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R.; et al. The grand challenges of Science Robotics. Sci. Robot. 2018, 3, eaar7650. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile Sensing-From Humans to Humanoids. IEEE Trans. Robot. 2010, 26, 1–20. [Google Scholar] [CrossRef]
- McEvoy, M.A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.N.; Yan, F. Flexible Electrochemical Biosensors for Health Monitoring. ACS Appl. Electron. Mater. 2021, 3, 53–67. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Avila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Zhang, S.L.; Bick, M.; Xiao, X.; Chen, G.R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887. [Google Scholar] [CrossRef]
- Woo, M.S.; Ahn, J.H.; Eom, J.H.; Hwang, W.S.; Kim, J.H.; Yang, C.H.; Song, G.J.; Hong, S.D.; Jhun, J.P.; Sung, T.H. Study on increasing output current of piezoelectric energy harvester by fabrication of multilayer thick film. Sens. Actuat. A Phys. 2018, 269, 524–534. [Google Scholar] [CrossRef]
- Yan, J.; Jeong, Y.G. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes. ACS Appl. Mater. Interfaces 2016, 8, 15700–15709. [Google Scholar] [CrossRef]
- Koka, A.; Zhou, Z.; Sodano, H.A. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 2014, 7, 288–296. [Google Scholar] [CrossRef]
- Park, K.I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G.T.; Zhu, G.; Kim, J.E.; Kim, S.O.; Kim, D.K.; Wang, Z.L.; et al. Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Adv. Mater. 2012, 24, 2999–3004. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kim, D.; Lee, J.-H.; Kim, T.Y.; Gupta, M.K.; Kim, S.-W. Unidirectional High-Power Generation via Stress-Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator. Adv. Funct. Mater. 2014, 24, 37–43. [Google Scholar] [CrossRef]
- Jung, J.H.; Chen, C.Y.; Yun, B.K.; Lee, N.; Zhou, Y.S.; Jo, W.; Chou, L.J.; Wang, Z.L. Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 2012, 23, 375401. [Google Scholar] [CrossRef] [Green Version]
- Rakotondrabe, M. Combining self-sensing with an unkown-input-observer to estimate the displacement, the force and the state in piezoelectric cantilevered actuators. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 4516–4523. [Google Scholar]
- Liseli, J.B.; Agnus, J.; Lutz, P.; Rakotondrabe, M. An Overview of Piezoelectric Self-Sensing Actuation for Nanopositioning Applications: Electrical Circuits, Displacement, and Force Estimation. IEEE Trans. Instrum. Meas. 2020, 69, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Ivan, I.A.; Aljanaideh, O.; Agnus, J.; Lutz, P.; Rakotondrabe, M. Quasi-Static Displacement Self-Sensing Measurement for a 2-DOF Piezoelectric Cantilevered Actuator. IEEE Trans. Ind. Electron. 2017, 64, 6330–6337. [Google Scholar] [CrossRef]
- Liseli, J.B.; Agnus, J.; Lutz, P.; Rakotondrabe, M. Self-Sensing Method Considering the Dynamic Impedance of Piezoelectric Based Actuators for Ultralow Frequency. IEEE Robot. Autom. Lett. 2018, 3, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Rakotondrabe, M.; Ivan, I.A.; Khadraoui, S.; Clevy, C.; Lutz, P.; Chaillet, N. Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly. In Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, QC, Canada, 6–9 July 2010; pp. 557–562. [Google Scholar]
- Rakotondrabe, M.; Ivan, I.A.; Khadraoui, S.; Lutz, P.; Chaillet, N. Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control. IEEE/ASME Trans. Mechatron. 2015, 20, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Seethaler, R.J. Sensorless Position Control for Piezoelectric Actuators Using a Hybrid Position Observer. IEEE/ASME Trans. Mechatron. 2014, 19, 667–675. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wang, Z.L. Scavenging Wind Energy by Triboelectric Nanogenerators. Adv. Energy Mater. 2018, 8, 1702649. [Google Scholar] [CrossRef]
- Jiang, T.; Yao, Y.Y.; Xu, L.; Zhang, L.M.; Xiao, T.X.; Wang, Z.L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 2017, 31, 560–567. [Google Scholar] [CrossRef]
- Bai, P.; Zhu, G.; Lin, Z.H.; Jing, Q.S.; Chen, J.; Zhang, G.; Ma, J.; Wang, Z.L. Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions. ACS Nano 2013, 7, 3713–3719. [Google Scholar] [CrossRef]
- Wen, D.-L.; Sun, D.-H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.-D.; Kim, B.; Brugger, J.; Zhang, H.-X.; et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 2021, 7. [Google Scholar] [CrossRef]
- Chen, J.; Han, K.; Luo, J.J.; Xu, L.; Tang, W.; Wang, Z.L. Soft robots with self-powered configurational sensing. Nano Energy 2020, 77, 105171. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Roscow, J.; Zhang, Y.; Dang, D.K.; Kim, E.J.; Misra, R.D.K.; Deng, L.B.; Chung, J.S.; Hur, S.H. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 2019, 792, 1–33. [Google Scholar] [CrossRef]
- Askari, H.; Khajepour, A.; Khamesee, M.B.; Saadatnia, Z.; Wang, Z.L. Piezoelectric and triboelectric nanogenerators: Trends and impacts. Nano Today 2018, 22, 10–13. [Google Scholar] [CrossRef]
- Jiao, P. Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy 2021, 88. [Google Scholar] [CrossRef]
- Shin, K.Y.; Lee, J.S.; Jang, J. Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 2016, 22, 95–104. [Google Scholar] [CrossRef]
- Maity, K.; Garain, S.; Henkel, K.; Schmeisser, D.; Mandal, D. Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor. ACS Appl. Polym. Mater. 2020, 2, 862–878. [Google Scholar] [CrossRef]
- Fan, F.R.; Lin, L.; Zhu, G.; Wu, W.Z.; Zhang, R.; Wang, Z.L. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 2012, 12, 3109–3114. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Dong, K.; Shen, S.; Jiang, Y.; Peng, X.; Ye, C.Y.; Wang, Z.L. Fully Fabric-Based Triboelectric Nanogenerators as Self-Powered Human-Machine Interactive Keyboards. Nano-Micro Lett. 2021, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.M.; Huang, X.Y.; Sun, B.; Wu, Z.Y.; He, J.L.; Jiang, P.K. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 2019, 57, 450–458. [Google Scholar] [CrossRef]
- Lapcinskis, L.; Malnieks, K.; Linarts, A.; Blums, J.; Smits, K.; Jarvekulg, M.; Knite, M.; Sutka, A. Hybrid Tribo-Piezo-Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers. ACS Appl. Energy Mater. 2019, 2, 4027–4032. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zhu, L.M.; Su, C.Y.; Ding, H.; Fatikow, S. Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey. IEEE T Autom. Sci. Eng. 2016, 13, 313–332. [Google Scholar] [CrossRef]
- Panda, P.K. Review: Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049–5062. [Google Scholar] [CrossRef] [Green Version]
- Rodel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Lv, X.; Zhu, J.G.; Xiao, D.Q.; Zhang, X.X.; Wu, J.G. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev. 2020, 49, 671–707. [Google Scholar] [CrossRef]
- Thong, H.C.; Zhao, C.L.; Zhou, Z.; Wu, C.F.; Liu, Y.X.; Du, Z.Z.; Li, J.F.; Gong, W.; Wang, K. Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today 2019, 29, 37–48. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B. PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics 2015, 474, 128–143. [Google Scholar] [CrossRef]
- Zhou, X.F.; Yan, F.; Wu, S.H.; Shen, B.; Zeng, H.R.; Zhai, J.W. Remarkable Piezophoto Coupling Catalysis Behavior of BiOX/BaTiO3 (X = Cl, Br, Cl0.166Br0.834) Piezoelectric Composites. Small 2020, 16, 2001573. [Google Scholar] [CrossRef]
- Choi, W.; Choi, K.; Yang, G.; Kim, J.C.; Yu, C. Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires. Polym. Test. 2016, 53, 143–148. [Google Scholar] [CrossRef]
- Kim, M.; Ito, R.; Kim, S.; Khanal, G.P.; Fujii, I.; Suzuki, T.S.; Uchikoshi, T.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3-BaTiO3 ceramics using electrophoretic deposition. J. Mater. Sci. 2018, 53, 2396–2404. [Google Scholar] [CrossRef]
- Jiao, P.; Yang, Y.; Egbe, K.I.; He, Z.; Lin, Y. Mechanical Metamaterials Gyro-Structure Piezoelectric Nanogenerators for Energy Harvesting under Quasi-Static Excitations in Ocean Engineering. ACS Omega 2021, 6, 15348–15360. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Cheng, T.H.; Wang, Z.L. Self-Powered Sensors and Systems Based on Nanogenerators. Sensors 2020, 20, 2925. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Wang, A.C.; Ding, W.B.; Guo, H.Y.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Niu, S.M.; Wang, S.H.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.F.; Wang, Z.L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Rasel, M.S.; Maharjan, P.; Salauddin, M.; Rahman, M.T.; Cho, H.O.; Kim, J.W.; Park, J.Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613. [Google Scholar] [CrossRef]
- Zhang, X.-S.; Han, M.-D.; Wang, R.-X.; Zhu, F.-Y.; Li, Z.-H.; Wang, W.; Zhang, H.-X. Frequency-Multiplication High-Output Triboelectric Nanogenerator for Sustainably Powering Biomedical Microsystems. Nano Lett. 2013, 13, 1168–1172. [Google Scholar] [CrossRef]
- Dhakar, L.; Pitchappa, P.; Tay, F.E.H.; Lee, C. An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 2016, 19, 532–540. [Google Scholar] [CrossRef]
- Zhao, X.L.; Hua, Q.L.; Yu, R.M.; Zhang, Y.; Pan, C.F. Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Electron. Mater. 2015, 1, 1500142. [Google Scholar] [CrossRef]
- Zhang, S.L.; Koh, C.G.; Kuang, K.S.C. Proposed rail pad sensor for wheel-rail contact force monitoring. Smart Mater. Struct. 2018, 27, 115041. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Xie, G.Z.; Jiang, Y.D.; Chen, C.X.; Su, Y.J.; Wang, Y.; Tai, H.L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuat. A Phys. 2020, 301, 111789. [Google Scholar] [CrossRef]
- Tian, G.; Deng, W.L.; Gao, Y.Y.; Xiong, D.; Yan, C.; He, X.B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H.T.; et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581. [Google Scholar] [CrossRef]
- Bazaei, A.; Boudaoud, M.; Ettefagh, M.H.; Chen, Z.Y.; Regnier, S. Displacement Sensing by Piezoelectric Transducers in High-Speed Lateral Nanopositioning. IEEE Sens. J. 2019, 19, 9156–9165. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cheng, C.K.; Shen, S.C. Design and Fabrication of a Displacement Sensor Using Screen Printing Technology and Piezoelectric Nanofibers in d(33 )Mode. Sens. Mater. 2019, 31, 233–244. [Google Scholar]
- Webster, J.G. The Measurement, Instrumentation and Sensors Handbook; CRC Pr I Llc: Boca Raton, FL, USA, 1998. [Google Scholar]
- Kulwanoski, G.; Schnellinger, J. The Principles of Piezoelectric Accelerometers. Sens. Mag. 2004, 21, 27–33. [Google Scholar]
- Model 6237 M70/M71 Piezoelectric Accelerometer. Specification Sheet; Meggitt Endevco Corp.: San Juan Capistrano, CA, USA; Available online: https://pdf.aeroexpo.online/pdf/endevco/model-6237-m70-m71-piezoelectric-accelerometer/186052-8960.html (accessed on 16 May 2021).
- Model 6240 M10 Piezoelectric Accelerometer. Specification Sheet; Meggitt Endevco Corp.: San Juan Capistrano, CA, USA; Available online: https://dainan.com.sg/wp-content/uploads/2016/10/6240M10.pdf (accessed on 16 May 2021).
- Zhang, C.; Liu, S.Y.; Huang, X.; Guo, W.; Li, Y.Y.; Wu, H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 2019, 62, 164–170. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B.K.; Kim, J.H.; Ahn, J.H. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 2019, 62, 259–267. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, Z.M.; Shu, S.; Tang, W. A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator. Micromachines 2021, 12, 231. [Google Scholar] [CrossRef]
- Yin, X.; Liu, D.; Zhou, L.L.; Li, X.Y.; Xu, G.Q.; Liu, L.; Li, S.X.; Zhang, C.G.; Wang, J.; Wang, Z.L. A Motion Vector Sensor via Direct-Current Triboelectric Nanogenerator. Adv. Funct. Mater. 2020, 30, 2002547. [Google Scholar] [CrossRef]
- Pang, Y.K.; Li, X.H.; Chen, M.X.; Han, C.B.; Zhang, C.; Wang, Z.L. Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.R.; Wang, Y.S.; Zhang, N.; Yang, X.; Wang, Z.K.; Zhao, L.B.; Yang, W.H.; Dong, L.X.; Che, L.F.; Wang, G.F.; et al. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy 2020, 67, 104228. [Google Scholar] [CrossRef]
- Liu, C.R.; Fang, L.X.; Zou, H.Y.; Wang, Y.S.; Chi, J.G.; Che, L.F.; Zhou, X.F.; Wang, Z.K.; Wang, T.; Dong, L.X.; et al. Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). Extrem. Mech. Lett. 2021, 42, 101021. [Google Scholar] [CrossRef]
- Suo, G.Q.; Yu, Y.H.; Zhang, Z.Y.; Wang, S.F.; Zhao, P.; Li, J.Y.; Wang, X.D. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341. [Google Scholar] [CrossRef]
- Xia, K.Q.; Xu, Z.W. Double-piezoelectric-layer-enhanced triboelectric nanogenerator for bio-mechanical energy harvesting and hot airflow monitoring. Smart Mater. Struct. 2020, 29, 095016. [Google Scholar] [CrossRef]
- Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M. Conformal, Ultra-thin Skin-Contact-Actuated Hybrid Piezo/Triboelectric Wearable Sensor Based on AlN and Parylene-Encapsulated Elastomeric Blend. Adv. Funct. Mater. 2021, 31, 2101047. [Google Scholar] [CrossRef]
- Koh, K.H.; Shi, Q.F.; Cao, S.; Ma, D.Q.; Tan, H.Y.; Guo, Z.W.; Lee, C.K. A self-powered 3D activity inertial sensor using hybrid sensing mechanisms. Nano Energy 2019, 56, 651–661. [Google Scholar] [CrossRef]
- Yuan, H.; Lei, T.M.; Qin, Y.; Yang, R.S. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy 2019, 59, 84–90. [Google Scholar] [CrossRef]
- Deng, W.; Jin, L.; Zhang, B.; Chen, Y.; Mao, L.; Zhang, H.; Yang, W. A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale 2016, 8, 16302–16306. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhou, J.; Song, J.H.; Liu, J.; Xu, N.S.; Wang, Z.L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772. [Google Scholar] [CrossRef]
- Kang, J.H.; Sauti, G.; Park, C.; Yamakov, V.I.; Wise, K.E.; Lowther, S.E.; Fay, C.C.; Thibeault, S.A.; Bryant, R.G. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes. ACS Nano 2015, 9, 11942–11950. [Google Scholar] [CrossRef]
- Mondal, S.; Paul, T.; Maiti, S.; Das, B.K.; Chattopadhyay, K.K. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 2020, 74, 104870. [Google Scholar] [CrossRef]
- Mi, H.Y.; Jing, X.; Zheng, Q.F.; Fang, L.M.; Huang, H.X.; Turng, L.S.; Gong, S.Q. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 2018, 48, 327–336. [Google Scholar] [CrossRef]
- Niu, S.M.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Chung, J.; Yong, H.; Lee, S.; Shin, D. A Deformable Foam-Layered Triboelectric Tactile Sensor with Adjustable Dynamic Range. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 43–51. [Google Scholar] [CrossRef]
- Vivekananthan, V.; Chandrasekhar, A.; Alluri, N.R.; Purusothaman, Y.; Kim, S.J. A highly reliable, impervious and sustainable triboelectric nanogenerator as a zero-power consuming active pressure sensor. Nanoscale Adv. 2020, 2, 746–754. [Google Scholar] [CrossRef]
- Meng, B.; Tang, W.; Too, Z.H.; Zhang, X.S.; Han, M.D.; Liu, W.; Zhang, H.X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240. [Google Scholar] [CrossRef]
- Guo, Y.B.; Zhang, X.S.; Wang, Y.; Gong, W.; Zhang, Q.H.; Wang, H.Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160. [Google Scholar] [CrossRef]
- Chen, X.X.; Song, Y.; Su, Z.M.; Chen, H.T.; Cheng, X.L.; Zhang, J.X.; Han, M.D.; Zhang, H.X. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 2017, 38, 43–50. [Google Scholar] [CrossRef]
- Wan, H.; Cao, Y.; Lo, L.-W.; Xu, Z.; Sepulveda, N.; Wang, C. Screen-printed soft triboelectric nanogenerator with porous PDMS and stretchable PEDOT:PSS electrode. J. Semicond. 2019, 40. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jing, T.T.; Xu, B.A. Self-Assembly of Porous Microstructured Polydimethylsiloxane Films for Wearable Triboelectric Nanogenerators. Macromol. Mater. Eng. 2020, 305, 2000276. [Google Scholar] [CrossRef]
- Xu, L.; Bu, T.Z.; Yang, X.D.; Zhang, C.; Wang, Z.L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633. [Google Scholar] [CrossRef]
- Liu, W.L.; Wang, Z.; Wang, G.; Liu, G.L.; Chen, J.; Pu, X.J.; Xi, Y.; Wang, X.; Guo, H.Y.; Hu, C.G.; et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zou, X.; Xu, W. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement. Sensors 2017, 17, 2207. [Google Scholar] [CrossRef]
- Francois, A.; De Man, P.; Preumont, A. Piezoelectric array sensing of volume displacement: A hardware demonstration. J. Sound Vib. 2001, 244, 395–405. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Zhu, G.; Niu, S.M.; Liu, Y.; Bai, P.S.; Jing, Q.; Wang, Z.L. Nanometer Resolution Self-Powered Static and Dynamic Motion Sensor Based on Micro-Grated Triboelectrification. Adv. Mater. 2014, 26, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Shi, Q.F.; Zhang, Z.X.; He, T.Y.Y.; Sun, Z.D.; Lee, C. Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface. Nano Energy 2021, 81, 105582. [Google Scholar] [CrossRef]
- Walter, P.L. Trends in accelerometer design for military and aerospace applications. Sens. J. Appl. Sens. Technol. 1999, 16, 44–51. [Google Scholar]
- Mattingly, M.J.Q. Aerospace Accelerometers. Nonscientific Magazine, 2 July 2008. [Google Scholar]
- Zhang, S.J.; Jiang, X.N.; Lapsley, M.; Moses, P.; Shrout, T.R. Piezoelectric accelerometers for ultrahigh temperature application. Appl. Phys. Lett. 2010, 96, 013506. [Google Scholar] [CrossRef]
- Tustin, W. Random Vibration & Shock Testing; Equipment Reliability Institute: Santa Barbara, CA, USA, 2005. [Google Scholar]
- Gabrielson, T.B. Mechanical-Thermal Noise in Micromachined Acoustic and Vibration Sensors. IEEE T Electron. Dev. 1993, 40, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Levinzon, F.A. Ultra-Low-Noise Seismic Piezoelectric Accelerometer with Integral FET Amplifier. IEEE Sens. J. 2012, 12, 2262–2268. [Google Scholar] [CrossRef]
- Jing, B.Y.; Leong, K.S. Demonstration of self-powered accelerometer using piezoelectric micro-power generator. In Proceedings of the 2013 IEEE Student Conference on Research and Developement, Putrajaya, Malaysia, 16–17 December 2013; pp. 560–563. [Google Scholar]
- Xu, M.; Feng, Y.; Zhou, H.; Sheng, J.; Zhu, L.; Hu, P.; Hao, R.; Zeng, Y.; Guo, H. Noise analysis of the triaxial piezoelectric micro-accelerometer. In Proceedings of the 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu, China, 27–30 October 2017; pp. 288–292. [Google Scholar]
- Reguieg, S.K.; Ghemari, Z.; Benslimane, T. Extraction of the relative sensitivity model and improvement of the piezoelectric accelerometer performances. In Proceedings of the 2018 International Conference on Signal, Image, Vision and their Applications (SIVA), Guelma, Algeria, 26–27 November 2018; pp. 1–5. [Google Scholar]
- Zhang, H.L.; Yang, Y.; Su, Y.J.; Chen, J.; Adams, K.; Lee, S.; Hu, C.G.; Wang, Z.L. Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Self- Powered Acceleration Sensor. Adv. Funct. Mater. 2014, 24, 1401–1407. [Google Scholar] [CrossRef]
- Brenes, A.; Morel, A.; Juillard, J.; Lefeuvre, E.; Badel, A. Maximum power point of piezoelectric energy harvesters: A review of optimality condition for electrical tuning. Smart Mater. Struct. 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- Grezaud, R.; Sibeud, L.; Lepin, F.; Willemin, J.; Riou, J.C.; Gomez, B. A robust and versatile, −40 °C to +180 °C, 8Sps to 1kSps, multi power source wireless sensor system for aeronautic applications. In Proceedings of the Symposium on Vlsi Circuits, Kyoto, Japan, 5–8 June 2017; pp. C310–C311. [Google Scholar]
- Park, I.; Maeng, J.; Shim, M.; Jeong, J.; Kim, C. A High-Voltage Dual-Input Buck Converter Achieving 52.9% Maximum End-to-End Efficiency for Triboelectric Energy-Harvesting Applications. IEEE J. Solid-State Circuits 2020, 55, 1324–1336. [Google Scholar] [CrossRef]
- Maeng, J.; Park, I.; Shim, M.; Jeong, J.; Kim, C. A High-Voltage Dual-Input Buck Converter with Bidirectional Inductor Current for Triboelectric Energy-Harvesting Applications. IEEE J. Solid-State Circuits 2021, 56, 541–553. [Google Scholar] [CrossRef]
- Morel, A.; Quelen, A.; Berlitz, C.A.; Gibus, D.; Gasnier, P.; Badel, A.; Pillonnet, G. 32.2 Self-Tunable Phase-Shifted SECE Piezoelectric Energy-Harvesting IC with a 30nW MPPT Achieving 446% Energy-Bandwidth Improvement and 94% Efficiency. In Proceedings of the 2020 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 488–490.
Technologies | Pressure Sensors | Displacement Sensors | Space Acceleration Sensor |
---|---|---|---|
PE (Refs. [24,25,40,64,65,66,67,68,69,70,71,72]) | Good output characteristics under low pressure; Self-sensing | Nm-level high-frequency displacement measurement; Small measuring range; Self-sensing | Mature technology and application; Less affected by ambient temperature; Unstable output under low measurement frequency |
TENG (Refs. [43,73,74,75,76,77,78,79]) | Mainly use contact separation mode or single-electrode mode of TENG; Good output characteristics under low pressure | Mainly use sliding model of TENG; Good measuring range, high measuring accuracy | Mainly use contact separation mode or single-electrode mode of TENG; Good low-frequency output characteristics; Unable to measure high-frequency vibration |
PE–TENG Hybrid (Refs. [44,45,80,81,82,83]) | Better output characteristics, more detection content (e.g., measuring the bending direction) | Mainly use contact separation mode or single-electrode mode of TENG; Good output characteristics and low measurement accuracy; Mainly used in human-computer interaction button detection | Good low-frequency output characteristics; Unable to measure high-frequency vibration |
Technologies | Energy Output | Sensitivity | Range | Ref. |
---|---|---|---|---|
PE | - | 0.8 V/kPa | - | [41] |
- | >4 Pa | - | [40] | |
Power density of 1.22mW·m−2 with load resistance of 70 M | Output voltages 0.1, 0.28, 0.45 V with various angles (around 60°, 90°,120°) | - | [65] | |
Voc: 2.51 V, Isc: 78.43 nA | 6.38 mV/N | - | [66] | |
TENG | - | 1.04 V/kPa (<10 kPa) Strain sensitivity 1.23 (10~120 kPa) | 0~120 kPa | [73] |
Voc: 15.1 V Isc: 4.7 uA Power density of 36 μW·m−2 with 30 kPa of pressure | 0.274 V/kPa (10.6 kPa~101.7 kPa) | 1.3 kPa~101.7 kPa | [74] | |
Power density of 3.8 mW∙m−2, Average current density of 170 μA·m−2 with load resistance of 1 GΩ | - | - | [43] | |
PE–TENG Hybrid | Voc: 2.7 kV Power density of 1.85 mW·m−2 with load resistance of 9 MΩ. Output voltage: 48 V Output power: 85 μW | - | - | [44] |
Voc: 2.7 kV Power density of 1.157 W·m−2 with load resistance of 1 MΩ. Charge density (6.55 nC·cm−2). | - | - | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Jiao, P.; Zhu, Z. Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. Micromachines 2021, 12, 813. https://doi.org/10.3390/mi12070813
Han Z, Jiao P, Zhu Z. Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. Micromachines. 2021; 12(7):813. https://doi.org/10.3390/mi12070813
Chicago/Turabian StyleHan, Zhicheng, Pengchen Jiao, and Zhiyuan Zhu. 2021. "Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors" Micromachines 12, no. 7: 813. https://doi.org/10.3390/mi12070813
APA StyleHan, Z., Jiao, P., & Zhu, Z. (2021). Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. Micromachines, 12(7), 813. https://doi.org/10.3390/mi12070813