Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets
<p>FESEM images of the commercial graphene nanoplatelets. (<b>a</b>) multiple graphene flakes (<b>b</b>) individual flake.</p> "> Figure 2
<p>Raman spectroscopy of the commercial graphene nanoplatelets.</p> "> Figure 3
<p>(<b>a</b>) Two-port phase shifter circuital representation (<b>b</b>) Circuital representation of the stub.</p> "> Figure 4
<p>Geometrical representation of the phase shifter with dimensions: (<b>a</b>) phase shifter; (<b>b</b>) individual stub.</p> "> Figure 5
<p>S<sub>21</sub> versus R<sub>g</sub> for different L<sub>s</sub>: (<b>a</b>) amplitude variation; (<b>b</b>) phase variation.</p> "> Figure 6
<p>Measurement setup of the commercial graphene based tunable phase shifter. In the inset a photograph of the prototype is shown.</p> "> Figure 7
<p>Impact of the aspect ratio on the transmission: (<b>a</b>) Amplitude variation; (<b>b</b>) Phase variation.</p> "> Figure 8
<p>Simulated transmission with different graphene resistance: (<b>a</b>) amplitude shift; (<b>b</b>) Phase shift.</p> "> Figure 9
<p>Transmission coefficient with measured (solid lines) and simulated values (dashed lines): (<b>a</b>) Amplitude; (<b>b</b>) Phase.</p> "> Figure 10
<p>Measured and simulated results at 4.3 GHz: (<b>a</b>) Insertion loss versus Rg; (<b>b</b>) Phase versus Rg.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Graphene Characterization
2.2. Circuit Model Optimization
2.3. Full-Wave Design
2.4. Prototype Realization
3. Results
3.1. Full-Wave Simulations
3.2. Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coroş, M.; Pogăcean, F.; Măgeruşan, L.; Socaci, C.; Pruneanu, S. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front. Mater. Sci. 2019, 13, 23–32. [Google Scholar] [CrossRef]
- Armano, A.; Agnello, S. Two-Dimensional Carbon: A Review of Synthesis Methods, and Electronic, Optical, and Vibrational Properties of Single-Layer Graphene. J. Carbon Res. 2019, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Verna, A.; Marasso, S.L.; Rivolo, P.; Parmeggiani, M.; Laurenti, M.; Cocuzza, M. Lift-Off Assisted Patterning of Few Layers Graphene. Micromachines 2019, 10, 426. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Xu, J.; Ding, X. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film. IEEE Trans. Nanobiosci. 2016, 15, 812–819. [Google Scholar] [CrossRef]
- Savi, P.; Naishadham, K.; Bayat, A.; Giorcelli, M.; Quaranta, S. Multi-Walled Carbon Nanotube Thin Film Loading for Tuning Microstrip Patch Antenna. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP 2016), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Cinti, S.; Arduini, F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens. Bioelectron. 2017, 89, 107–122. [Google Scholar] [CrossRef]
- Fernández, S.; Boscá, A.; Pedrós, J.; Inés, A.; Fernández, M.; Arnedo, I.; González, J.P.; de la Cruz, M.; Sanz, D.; Molinero, A.; et al. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J. 2011, 11, 3161–3170. [Google Scholar] [CrossRef]
- Chou, J.-C.; Chen, J.-S.; Liao, Y.-H.; Lai, C.-H.; Yan, S.-J.; Huang, M.-S.; Wu, T.-Y. Fabrication and Characteristic Analysis for Enzymatic Glucose Biosensor Modified by Graphene Oxide and Magnetic Beads Based on Microfluidic Framework. IEEE Sens. J. 2017, 17, 1741–1748. [Google Scholar] [CrossRef]
- Novikov, S.; Satrapinsky, A.; Lebedeva, N.; Iisakka, I. Sensitivity Optimization of Epitaxial graphene-based gas sensors. IEEE Trans. Instrum. Meas. 2013, 62, 1859–1864. [Google Scholar] [CrossRef]
- Latif, U.; Dickert, F.L. Graphene Hybrid Materials in Gas Sensing Applications. Sensors 2015, 15, 30504–30524. [Google Scholar] [CrossRef] [PubMed]
- Savi, P.; Naishadham, K.; Quaranta, S.; Giorcelli, M.; Bayat, A. Microwave characterization of graphene films for sensor applications. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, I2MTC, Torino, Italy, 22–25 May 2017. [Google Scholar]
- Tulliani, J.-M.; Inserra, B.; Ziegler, D. Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, F.J.; Rivadeneyra, A.; Becherer, M.; Morales, D.P.; Rodríguez, N. Fabrication and Characterization of Humidity Sensors Based on Graphene Oxide–PEDOT: PSS Composites on a Flexible Substrate. Micromachines 2020, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, X.; Li, W.; Luo, D.; Wang, F. Differential Structure with Graphene Oxide for both Humidity and Temperature Sensing. IEEE Sens. J. 2017, 17, 4357–4364. [Google Scholar] [CrossRef]
- Aqeeli, M.; Leng, T.; Huang, X.; Chen, J.C.; Chang, K.H.; Alburaikan, A.; Hu, Z. Electromagnetic interference shielding based on highly flexible and conductive graphene. IET Electron. Lett. 2015, 51, 1350–1352. [Google Scholar] [CrossRef]
- Yasir, M.; Aldrigo, M.; Dragoman, M.; Dinescu, A.; Bozzi, M.; Iordanescu, S.; Vasilache, D. Integration of Antenna Array and Self-Switching Graphene Diode for Detection at 28 GHz. IEEE Electron. Device Lett. 2019, 40, 628–631. [Google Scholar] [CrossRef]
- Zhang, A.; Lu, W.; Liu, Z.; Chen, H. A Tunable Attenuator Based on a Graphene-Loaded Coupled Microstrip Line. IEEE Trans. Microw. Theory Tech. 2020, 68, 939–950. [Google Scholar] [CrossRef]
- Yasir, M.; Bistarelli, S.; Cataldo, A.; Bozzi, M.; Perregrini, L.; Bellucci, S. Voltage-Controlled and Input-Matched Tunable Microstrip Attenuators Based on Few-Layer Graphene. IEEE Trans. Microw. Theory Tech. 2020, 68, 701–710. [Google Scholar] [CrossRef]
- Andersson, M.A.; Habibpour, O.; Vukusic, J.; Stake, J. 10 dB small-signal graphene FET amplifier. IET Electron. Lett. 2012, 48, 861–863. [Google Scholar] [CrossRef] [Green Version]
- Giambra, M.A.; Benfante, A.; Zeiss, L.; Pernice, R.; Miseikis, V.; Pernice, W.H.P.; Jang, M.H.; Ahn, J.-H.; Cino, A.C.; Stivala, S.; et al. Layout influence on microwave performance of graphene field effect transistors. IET Electron. Lett. 2018, 54, 984–986. [Google Scholar] [CrossRef]
- Zinenko, T.L.; Matsushima, A.; Nosich, A.I. Surface-plasmon, grating-mode and slab-mode resonances in THz wave scattering by a graphene strip grating embedded into a dielectric slab. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Tretyakov, S.A. Toward Ultimate Control of Terahertz Wave Absorption in Graphene. IEEE Trans. Antennas Propag. 2019, 67, 2452–2461. [Google Scholar] [CrossRef] [Green Version]
- Yasir, M.; Bistarelli, S.; Cataldo, A.; Bozzi, M.; Perregrini, L.; Bellucci, S. Tunable Phase Shifter Based on Few-Layer Graphene Flakes. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 47–49. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Z.; Lu, W.; Chen, H. Dynamically Tunable Attenuator on a Graphene-Based Microstrip Line. IEEE Trans. Microw. Theory Tech. 2019, 67, 746–753. [Google Scholar] [CrossRef]
- Yasir, M.; Bistarelli, S.; Cataldo, A.; Bozzi, M.; Perregrini, L.; Bellucci, S. Innovative tunable microstrip attenuators based on few-layer graphene flakes. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, UAE, 14–16 November 2016. [Google Scholar]
- Yasir, M.; Savi, P. Commercial graphene nanoplatelets-based tunable attenuator. Electron. Lett. 2020, 56, 184–187. [Google Scholar] [CrossRef]
- Yasir, M.; Savi, P. Frequency reconfigurable antenna based on commercial graphene nanoplatelets. Electron. Lett. 2020, 56, 421–424. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Liu, Z.; Zhang, A.; Chen, H. Graphene-Based Microwave Antennas with Reconfigurable Pattern. IEEE Trans. Antennas Propag. 2020, 68, 2504–2510. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, M.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dragoman, M.; Aldrigo, M.; Iordanescu, S.; Modreanu, M.; Povey, I.; Vasilache, D.; Dinescu, A.; Romanitan, C. Low-Voltage Phase Shifters Based on HfxZr1-xO2 Ferroelectrics Integrated with Phased Antenna Arrays. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018. [Google Scholar]
Ls | Lt = 3mm (0.04 λ0) | Lt = 4mm (0.053 λ0) | Lt = 5 mm (0.067 λ0) | Lt = 6 mm (0.08 λ0) | ||||
---|---|---|---|---|---|---|---|---|
ΔRin | ΔXin | ΔRin | ΔXin | ΔRin | ΔXin | ΔRin | ΔXin | |
0.05 λ0 | 41.5 | 46.9 | 37.6 | 40 | 34.5 | 34.7 | 31.75 | 30.8 |
0.15 λ0 | 0.3 | 0.02 | 0.3 | 0.02 | 0.3 | 0.02 | 0.3 | 0.03 |
0.3 λ0 | 48 | 67 | 45 | 58 | 41 | 50 | 38 | 44 |
0.35 λ0 | 43 | 52.6 | 39 | 45 | 36.6 | 38 | 33.4 | 34.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasir, M.; Savi, P. Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets. Micromachines 2020, 11, 600. https://doi.org/10.3390/mi11060600
Yasir M, Savi P. Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets. Micromachines. 2020; 11(6):600. https://doi.org/10.3390/mi11060600
Chicago/Turabian StyleYasir, Muhammad, and Patrizia Savi. 2020. "Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets" Micromachines 11, no. 6: 600. https://doi.org/10.3390/mi11060600
APA StyleYasir, M., & Savi, P. (2020). Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets. Micromachines, 11(6), 600. https://doi.org/10.3390/mi11060600