Recent Developments for Flexible Pressure Sensors: A Review
<p>Characteristics and functions or applications of recently developed devices for flexible sensors. “Active-matrix backplane”, reproduced with permission [<a href="#B7-micromachines-09-00580" class="html-bibr">7</a>]. Copyright 2010, Nature Materials. “Flexible circuit”, reproduced with permission [<a href="#B8-micromachines-09-00580" class="html-bibr">8</a>]. Copyright 2010, Nature Materials. “Flexible display”, reproduced with permission [<a href="#B9-micromachines-09-00580" class="html-bibr">9</a>]. Copyright 2013, Nature Materials. “Flexible octobot”, reproduced with permission [<a href="#B10-micromachines-09-00580" class="html-bibr">10</a>]. Copyright 2016, Nature. “Human motion monitoring”, reproduced with permission [<a href="#B11-micromachines-09-00580" class="html-bibr">11</a>]. Copyright 2017, ACS Applied Materials & Interfaces. “Intelligent sensing”, reproduced with permission [<a href="#B12-micromachines-09-00580" class="html-bibr">12</a>]. Copyright 2014, Nature Communications. OLED—organic light-emitting diode.</p> "> Figure 2
<p>Schematic illustration of three common transduction mechanisms and representative devices: (<b>a</b>) piezoresistivity; (<b>b</b>) capacitance; and (<b>c</b>) piezoelectricity.</p> "> Figure 3
<p>(<b>a</b>) Schematic illustration of the fabrication process of the flexible pressure sensor. (<b>b</b>) Digital image of the fabricated sensor and its cross-sectional scanning electron microscope (SEM) image. Reproduced with permission [<a href="#B24-micromachines-09-00580" class="html-bibr">24</a>]. Copyright 2017, ACS Applied Materials & Interfaces. (<b>c</b>) Sensors sensitivities with microstructure and no structure. (<b>d</b>) Response time of sensors with microstructure. Reproduced with permission [<a href="#B33-micromachines-09-00580" class="html-bibr">33</a>]. Copyright 2014, Small. (<b>e</b>) Sensitivities of pressure sensors constructed with different polydimethylsiloxane (PDMS) microstructures (Inset: schematic of a typical E-skin). (<b>f</b>) Real-time I–t curves of the E-skin constructed with PDMS for detection of a bee (40 mg) and an ant (10 mg), respectively. Reproduced with permission [<a href="#B34-micromachines-09-00580" class="html-bibr">34</a>]. Copyright 2014, Advanced Materials. VANCT—vertically aligned carbon nanotube.</p> "> Figure 4
<p>(<b>a</b>) (<b>Top</b>), SEM images of the microstructured polydimethylsiloxane (PDMS) films. Two-dimensional arrays of square pyramids (<b>left</b>) and pyramidal feature arrays (<b>right</b>). (<b>Bottom</b>), the pressure-sensitive structured PDMS films show the flexible and conformability. (<b>b</b>) The microstructured PDMS films are able to sense very small pressure. Reproduced with permission [<a href="#B26-micromachines-09-00580" class="html-bibr">26</a>]. 2010, Copyright Nature Materials. (<b>c</b>) Multilayer structure of flexible pressure sensor, and schematic diagram and SEM image of sensor structure showing Pt electrodes, aluminum nitride (AlN), and polyethylene terephthalate (PET) films. (<b>d</b>) Relationship between pressure and electric charge of sensor. The frequency is 10 Hz. Dependence of gain and phase of sensor on frequency. The load and offset are 20 and 40 N, respectively. (<b>e</b>) Photograph of actual test setup to measure pulse wave forms with sensor and sphygmomanometer. Human pulse waves measured with sensor and sphygmomanometer. Reproduced with permission [<a href="#B43-micromachines-09-00580" class="html-bibr">43</a>]. Copyright 2006, Journal of Applied Physics.</p> "> Figure 5
<p>(<b>a</b>) The image of an electronic artificial skin. Reproduced with permission [<a href="#B49-micromachines-09-00580" class="html-bibr">49</a>]. Copyright 2013, Journal of Micromechanics & Microengineering. (<b>b</b>) Sensor arrays based on P(VDF-TrFE) microstructure could be applicable for accurate detection of the human body temperature and heartbeat frequency. Reproduced with permission [<a href="#B50-micromachines-09-00580" class="html-bibr">50</a>]. Copyright 2015, Scientific Reports. (<b>c</b>) Fabrication and resistive pressure response of micropatterned elastic microstructured conducting polymer (EMCP) films. (<b>d</b>) Resistance response and pressure sensitivity of the EMCP pressure. Reproduced with permission [<a href="#B51-micromachines-09-00580" class="html-bibr">51</a>]. Copyright 2014, Nature Communication.</p> "> Figure 6
<p>(<b>a</b>) Schematic process of the soft PDMS molds. (<b>b</b>) Scanning electron microscope (SEM) images of different spatial arrangements of pyramidal microstructured PDMS. Spacing of 41 µm, 88 µm, 182 µm, and interspersed design of two pyramidal structures with different base areas (scale bar: 100 µm). (<b>c</b>) Capacitance changes with increasing pressure for different spatial configurations of microstructured PDMS. Reproduced with permission [<a href="#B61-micromachines-09-00580" class="html-bibr">61</a>]. Copyright 2015, Advanced Functional Materials. (<b>d</b>) High skin conforming and pulse-detectable pressure sensor using microhair structures. Reproduced with permission [<a href="#B62-micromachines-09-00580" class="html-bibr">62</a>]. Copyright 2015, Advanced Materials.</p> ">
Abstract
:1. Introduction
2. Flexible Pressure Sensors
2.1. Transduction Mechanism
2.1.1. Piezoresistive Pressure Sensors
2.1.2. Capacitive Pressure Sensors
2.1.3. Piezoelectric Pressure Sensors
2.2. Materials for Flexible Sensors
2.2.1. Flexible Substrates
2.2.2. Conductors
3. Promising Applications of Flexible Pressure Sensors
3.1. Electronic Skin (E-skin) Flexible Tactile Sensors
3.1.1. Developments of E-skin Flexible Tactile Sensors
3.1.2. The High Sensitivity of E-skin Tactile Sensors
3.1.3. Challenges and Trends of E-skin Tactile Sensors
3.2. Wearable Flexible Sensors
3.2.1. Development of Wearable Flexible Sensors
3.2.2. Wearable Sensors Classification
3.2.3. Challenges and Trends of Wearable Sensors
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Cédric, C.; Maryline, L.; Vladan, K. A Flexible Strain Sensor Based on a Conductive Polymer Composite forin situMeasurement of Parachute Canopy Deformation. Sensors 2010, 10, 8291–8303. [Google Scholar]
- Pang, C.; Lee, C.; Suh, K.Y. Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 2013, 130, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Hammock, M.L.; Chortos, A.; Tee, C.K.; Tok, B.H.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 2013, 25, 5997–6038. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Zhang, H.L.; Yu, R.M.; Dong, L.; Peng, D.F.; Zhang, A.H.; Zhang, Y.; Liu, H.; Pan, C.F.; Wang, Z.L. Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Adv. Mater. 2015, 27, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Bao, Z.A. Skin-inspired electronic devices. Mater. Today 2014, 17, 321–331. [Google Scholar] [CrossRef]
- Bauer, S.; Bauergogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 2014, 26, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takei, K.; Takahashi, T.; Ho, J.C.; Ko, H.; Gillies, A.G.; Leu, P.W.; Fearing, R.S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Sekitani, T.; Zschieschang, U.; Klauk, H.; Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 2010, 9, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, J.A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Dai, K.; Zhai, Y.; Liu, H.; Zhan, P.; Gao, J.; Zheng, G.; Liu, C.; Shen, C. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Appl. Mater. Interfaces 2017, 9, 42266–42277. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, S.; Kishimoto, A.; Miyayama, M. Effect of Moisture Absorption on Piezoresistance of Conducting Polymer Composite Thin Films. Jpn. J. Appl. Phys. 1998, 37, L1158–L1161. [Google Scholar] [CrossRef]
- Taya, M.; Kim, W.J.; Ono, K. Piezoresistivity of a short fiber/elastomer matrix composite. Mech. Mater. 1998, 28, 53–59. [Google Scholar] [CrossRef]
- Gong, S.T.; Zhang, H.; Huang, W.; Mao, L.; Ke, Y.; Gao, M.; Yu, B. Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon 2018, 140, 286–295. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Qiao, M.; Ai, L.; Sun, K.; Mi, Q.; Wang, Q.; Zang, S.; Zuo, Y.; Yuan, X. Human motion monitoring in sports using wearable graphene-coated fiber sensors. Sens. Actuators A Phys. 2018, 274, 132–140. [Google Scholar] [CrossRef]
- Cai, G.; Yang, M.; Xu, Z.; Liu, J.; Tang, B.; Wang, X. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396–403. [Google Scholar] [CrossRef]
- Kumari, P.; Mathew, L.; Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 2016, 90, 298. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, N.; Chen, S.; Lin, S.; Li, W.; Xu, Z.; Yuan, F.; Huang, L.; Hu, B.; Zhou, L. Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. J. Mater. Chem. A 2018, 6, 5065–5070. [Google Scholar]
- Patra, S.; Choudhary, R.; Madhuri, R.; Sharma, P.K. Chapter 13-Graphene-Based Portable, Flexible, and Wearable Sensing Platforms: An Emerging Trend for Health Care and Biomedical Surveillance. In Graphene Bioelectronics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 307–338. [Google Scholar]
- Wu, W.; Wen, X.; Wang, Z.L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y.D.; Lim, H.; Kim, S.Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Adv. Funct. Mater. 2017, 27, 1606066. [Google Scholar] [CrossRef]
- Kim, K.H.; Hong, S.K.; Jang, N.S.; Ha, S.H.; Lee, H.W.; Kim, J.M. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology. ACS Appl. Mater. Interfaces 2017, 9, 17499–17507. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.Q.; Zhang, K.N.; Tian, H.; Liu, Y.; Wang, D.Y.; Chen, Y.Q.; Yang, Y.; Ren, T.L. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef] [PubMed]
- Mannsfeld, S.C.B.; Tee, C.K.; Stoltenberg, R.M.; Chen, H.H.; Barman, S.; Muir, B.V.O.; Sokolov, A.N.; Reese, C.; Bao, Z.N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhai, T.; Dan, Y.; Turng, L.S. Reinforced natural rubber nanocomposites using graphene oxide as a reinforcing agent and their in situ reduction into highly conductive materials. Polym. Compos. 2017, 38, E199–E207. [Google Scholar] [CrossRef]
- Gong, S.; Lai, D.T.H.; Su, B.; Si, K.J.; Ma, Z.; Yap, L.W.; Guo, P.; Cheng, W. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Adv. Electron. Mater. 2015, 1, 1400063. [Google Scholar] [CrossRef] [Green Version]
- Doshi, S.M.; Thostenson, E.T. Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range. ACS Sens. 2018, 3, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Zhang, F.; Di, C.A.; Zhu, D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Vatani, M.; Lu, Y.; Engeberg, E.D.; Choi, J.W. Combined 3D printing technologies and material for fabrication of tactile sensors. Int. J. Precis. Eng. Manuf. 2015, 16, 1375–1383. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, B. Research on pressure sensor characteristics of conductive rubber polymer composites. J. Funct. Mater. 2016, 47, 105–109. [Google Scholar] [CrossRef]
- Zhu, B.; Niu, Z.; Wang, H.; Leow, W.R.; Wang, H.; Li, Y.; Zheng, L.; Wei, J.; Huo, F.; Chen, X. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Gu, Y.; Xiong, Z.P.; Cui, Z.; Zhang, T. Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Adv. Mater. 2014, 26, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.V.; Zhang, X.; Zhu, B. The development of a new piezoresistive pressure sensor for low pressures. IEEE Trans. Ind. Electron. 2018, 65, 6487–6496. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z.L. Recent Progress in Electronic Skin. Adv. Sci. 2015, 2, 1500169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, K.F.; Lee, K.F.; Lee, M.Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectron. Eng. 2012, 99, 1–5. [Google Scholar] [CrossRef]
- Kang, J.; Son, D.; Wang, G.J.N.; Liu, Y.; Lopez, J.; Kim, Y.; Jin, L. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30, 1706846. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yuan, H.; Kan, W.; Guo, X.; Liu, C.; Liu, P. A flexible three-axial capacitive tactile sensor with multilayered dielectric for artificial skin applications. Microsyst. Technol. 2017, 23, 1847–1852. [Google Scholar] [CrossRef]
- Dobrzynska, J.A.; Gijs, M.A.M. Polymer-based flexible capacitive sensor for three-axial force measurements. J. Micromech. Microeng. 2013, 23, 15009–15019. [Google Scholar] [CrossRef]
- Peng, P.; Rajamani, R.; Erdman, A.G. Flexible Tactile Sensor for Tissue Elasticity Measurements. J. Microelectromech. Syst. 2015, 18, 1226–1233. [Google Scholar] [CrossRef]
- Zhuo, B.; Chen, S.; Zhao, M.; Gu, X. High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer dielectric layer micro-structured by 3-D printed mold. IEEE J. Electron. Devices Soc. 2017, 5, 219–223. [Google Scholar] [CrossRef]
- Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 2006, 100, 114318. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Song, M.S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tien, N.T.; Jeon, S.; Kim, D.I.; Trung, T.Q.; Jang, M.; Hwang, B.U.; Byun, K.E.; Bae, J.; Lee, E.; Tok, J.B.H.; et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 2014, 26, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.I.; Trung, T.Q.; Hwang, B.U.; Kim, J.S.; Jeon, S.; Bae, J.; Park, J.J.; Lee, N.E. A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring. Sci. Rep. 2015, 5, 12705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.; Ryuh, Y. Fabrication of flexible tactile force sensor using conductive ink and silicon elastomer. Sens. Actuators A Phys. 2016, 237, 72–80. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, K.Y.; Cheong, O.J.; Kim, J.H.; Jang, J. Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring. Sci. Rep. 2015, 5, 7887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.P.; Zhou, D.B.; Cao, J.G. Development of a Stretchable Conductor Array with Embedded Metal Nanowires. IEEE Trans. Nanotechnol. 2013, 12, 561–565. [Google Scholar] [CrossRef]
- Wang, H.P.; Zhou, D.B.; Cao, J.G. Development of a Skin-Like Tactile Sensor Array for Curved Surface. IEEE Sens. J. 2013, 14, 55–61. [Google Scholar] [CrossRef]
- Yogeswaran, N.; Tinku, S.; Khan, S.; Lorenzelli, L.; Vinciguerra, V.; Dahiya, R. Stretchable resistive pressure sensor based on CNT-PDMS nanocomposites. In Proceedings of the 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 29 June–2 July 2015; pp. 326–329. [Google Scholar]
- Ding, J.X.; Yunjian, G.E.; Fei, X.U.; Hao, C.G.; Huang, Y. Study of a New Type Skin Liked Arrayed Tactile Sensor Based on Conductive Rubber. Chin. J. Sens. Actuators 2010, 23, 315–321. [Google Scholar]
- Lou, Z.; Chen, S.; Wang, L.L.; Jiang, K.; Shen, G.Z. An ultra-sensitive and rapid response speed graphene pressure sensor for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14. [Google Scholar] [CrossRef]
- Lai, Y.C.; Ye, B.W.; Lu, C.F.; Chen, C.T.; Jao, M.H.; Su, W.F.; Hung, W.Y.; Lin, T.Y.; Chen, Y.F. Extraordinarily Sensitive and Low-Voltage Operational Cloth-Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses: A Tactile-Induced Insulating-to-Conducting Transition. Adv. Funct. Mater. 2016, 26, 1286–1295. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, J.; Miao, C.; Yin, H.; Li, W.; Xia, F.; Cao, J.; Zhou, J.; Miao, C.; Yin, H. Research progress and development strategy on tactile sensors for e-skin. J. Harbin Inst. Technol. 2017, 1, 1–13. [Google Scholar]
- Tee, B.C.K.; Chortos, A.; Dunn, R.R.; Schwartz, G.; Eason, E.; Bao, Z.N. Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics. Adv. Funct. Mater. 2015, 24, 5427–5434. [Google Scholar] [CrossRef]
- Pang, C.; Koo, J.H.; Nguyen, A.; Caves, J.M.; Kim, M.G.; Chortos, A.; Kim, K.; Wang, P.J.; Tok, J.B.; Bao, Z. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S.D.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 2017, 36, 166–175. [Google Scholar] [CrossRef]
- Cao, R.; Pu, X.; Du, X.; Yang, W.; Wang, J.; Guo, H.; Zhao, S.; Yuan, Z.; Zhang, C.; Li, C.; et al. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensor for Intelligent Human-Machine Interaction. ACS Nano. 2018, 12, 5190–5196. [Google Scholar] [CrossRef] [PubMed]
- Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 2017, 131, 394–401. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.; Tan, J.; Xuan, F. Sandpaper-molded wearable pressure sensor for electronic skins. Sens. Actuators A 2018, 280, 205–209. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, J.; Meng, Y.; Zhang, N.; Yang, X. Design and experiment of tactile sensors for testing surface roughness of fruits and vegetables. Trans. Chin. Soc. Agric. Mach. 2015, 46, 16–22. [Google Scholar]
- Jung, H.C.; Moon, J.H.; Baek, D.H.; Lee, J.H.; Choi, Y.Y.; Hong, J.S.; Lee, S.H. CNT/PDMS Composite Flexible Dry Electrodesfor Long-Term ECG Monitoring. IEEE Trans. Biomed. Eng. 2012, 59, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.S.; Deng, Q.K. The design of a wearable ECG and respiration sensor vest and its monitoring system. Chin. J. Med. Instrum. 2006, 30, 341–344. [Google Scholar]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F.; et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, Y.; Zhang, S.; Nguyen, T.H.; Yang, W.; Noh, J.S. Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sens. Actuators B Chem. 2018, 265, 609–616. [Google Scholar] [CrossRef]
- Hoss, U.; Budiman, E.S. Factory-calibrated continuous glucose sensors: The science behind the technology. Diabetes Technol. Ther. 2017, 19, S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Fiala, J.; Bingger, P.; Ruh, D.; Foerster, K.; Heilmann, C.; Beyersdorf, F.; Zappe, H.; Seifert, A. An implantable optical blood pressure sensor based on pulse transit time. Biomed. Microdevices 2013, 15, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Das, P.S.; Hossain, M.F.; Park, J.Y. Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement. Microelectron. Eng. 2017, 180, 45–51. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera-Netoc, A.; Marques, C.; Pontes, M.J. A polymer optical fiber temperature sensor based on material features. Sensors 2018, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Keum, K.; Lee, G.; Kim, D.; Lee, S.S.; Ha, J.S. Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles. Nano Energy 2017, 35, 199–206. [Google Scholar] [CrossRef]
Active Materials | Perception Mechanism | Sensitivity | Minimum Detection | Maximum Detection | Ref. |
---|---|---|---|---|---|
PFA | Piezoelectricity | 15 V kPa−1 | - | 2.5 kPa | [19] |
PVDF | Piezoelectricity | - | 1 kPa | 30 kPa | [20] |
ZnO nanorod | Piezoelectricity | - | 3.5 kPa | 31.5 kPa | [21] |
CNTs/PDMS interlocked microdome | Piezoresistivity | 15.1 kPa−1 | 0.2 Pa | 59 kPa | [22] |
ACNT/G/PDMS | Piezoresistivity | 19.8 kPa−1 | 0.6 Pa | 0.3 kPa | [23] |
VACNT/PDMS | Piezoresistivity | 0.3 kPa−1 | 2 Pa | 10 kPa | [24] |
Graphene-paper | Capacitance | 17.2 kPa−1 | 2 kPa | 20 kPa | [25] |
PDMS microstructure OFET | Capacitance | 0.55 kPa−1 | 3 Pa | 20 kPa | [26] |
System | Classification | Advantages | Disadvantages |
---|---|---|---|
Metal System | - | Excellent electrical conductivity Great chemical stability Preservative | Easy oxidization Instability in conductivity High hardness Difficult forming |
Carbon System | Graphene | Excellent electricity Low cost | Instability in conductivity Difficult to form chain aggregates |
Carbon Black | Great and stable electricity Easy for preparation Low cost Rich in variety | Easy to reunite | |
Carbon Nanotubes | Excellent electricity Great surface area | Complex for preparation High cost |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines 2018, 9, 580. https://doi.org/10.3390/mi9110580
Xu F, Li X, Shi Y, Li L, Wang W, He L, Liu R. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines. 2018; 9(11):580. https://doi.org/10.3390/mi9110580
Chicago/Turabian StyleXu, Fenlan, Xiuyan Li, Yue Shi, Luhai Li, Wei Wang, Liang He, and Ruping Liu. 2018. "Recent Developments for Flexible Pressure Sensors: A Review" Micromachines 9, no. 11: 580. https://doi.org/10.3390/mi9110580
APA StyleXu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L., & Liu, R. (2018). Recent Developments for Flexible Pressure Sensors: A Review. Micromachines, 9(11), 580. https://doi.org/10.3390/mi9110580