Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization
"> Figure 1
<p>(<b>a</b>) Schematic image of the device with embedded channel, (<b>b</b>) A close-up view of the tips at the handling area.</p> "> Figure 2
<p>(<b>a</b>) Scanning electron microscope (SEM) image of the handling area where compressing and sensing tips access the microfluidic channel, (<b>b</b>) Schematic view of polydimethylsiloxane (PDMS) cover alignment.</p> "> Figure 3
<p>Actuation characteristics of various spring designs.</p> "> Figure 4
<p>SEM images of the fabricated device: (<b>a</b>) Displacement sensor based on differential capacitors, (<b>b</b>) opposing tips accessing the handling area, (<b>c</b>) an overview of the device, (<b>d</b>) electrostatic comb drive actuators with (<b>e</b>) a close-up view.</p> "> Figure 5
<p>Fabrication process of the device. (<b>a</b>) Frontside photolithography, (<b>b</b>) Frontside silicon etching, (<b>c</b>) Protecting frontside structures, (<b>d</b>) Backside Al deposition, (<b>e</b>) Backside photolithography, (<b>f</b>) Al etching, (<b>g</b>) Backside silicon etching, (<b>h</b>) SiO<sub>2</sub> removal.</p> "> Figure 6
<p>(<b>a</b>) An assembled device on printed circuit board (PCB) mounted on the setup, (<b>b</b>) Schematic view illustrating electrical connections of a device.</p> "> Figure 7
<p>(<b>a</b>) After assembling the PDMS cover on the MEMS device (i); the formed channel is filled with liquid. Adjusting the pressure with the pump, the liquid enters the channel (ii); reaches the opposing tips (iii); goes through the handling area (iv); and finally, completely fills the channels; (<b>b</b>) The liquid exchange capability of the device is tested with water and a blue dye solution. (i) While the channel is filled with water; (ii,iii) a blue dye solution is injected at the inlet and within seconds (iv) the liquid in the channel is completely replaced.</p> "> Figure 8
<p>Frequency response of the device in different conditions showing (<b>a</b>) the amplitude and (<b>b</b>) the phase shift of the sensor readouts.</p> "> Figure 9
<p>(<b>a</b>) Resonance frequency of the system increased with increasing glucose concentration while (<b>b</b>) the amplitude decreased.</p> "> Figure 10
<p>The amplitude of the signal (<b>a</b>) at 4 kHz and (<b>b</b>) during sweeping the frequency in different conditions.</p> "> Figure 11
<p>Sequential photos demonstrate single cell capturing. (<b>a</b>) Applying a potential difference between the compressing actuator electrodes narrows the gap between the tips; (<b>b</b>) The solution is kept flowing until a cell arrives at the handling area; (<b>c</b>) Then, the flow rate and the potential difference between the compressing actuator electrodes are decreased until the cell is positioned between the tips; (<b>d</b>) Finally, the flow is completely stopped and cell compression is performed.</p> ">
Abstract
:1. Introduction
2. Concept and Design
2.1. Principle
2.2. Design Description
2.2.1. Handling Area and Microfluidic Channel
2.2.2. Compressing Side
2.2.3. Sensing Side
2.3. MEMS Fabrication Process
3. Setup and Operation
3.1. Experimental Setup
3.2. Liquid Handling
3.3. Mechanical Detection Method
3.4. Electrical Detection Method
4. Device Performance and Results
4.1. Frequency Response and Real-Time Analysis
4.2. Mechanical Measurements
4.3. Electrical Measurements
4.4. Biological Sample Handling
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lim, C.T.; Zhou, E.H.; Quek, S.T. Mechanical models for living cells—A review. J. Biomech. 2006, 39, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 2007, 55, 3989–4014. [Google Scholar] [CrossRef]
- Cross, S.E.; Jin, Y.-S.; Rao, J.; Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Ketene, A.N.; Schmelz, E.M.; Roberts, P.C.; Agah, M. The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Tse, H.T.K.; Gossett, D.R.; Moon, Y.S.; Masaeli, M.; Sohsman, M.; Ying, Y.; Mislick, K.; Adams, R.P.; Rao, J.; Di Carlo, D. Quantitative Diagnosis of Malignant Pleural Effusions by Single-Cell Mechanophenotyping. Sci. Transl. Med. 2013, 5, 212ra163. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.H.; Lim, C.T. Biomechanics approaches to studying human diseases. Trends Biotechnol. 2007, 25, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Guck, J.; Chilvers, E.R. Mechanics meets medicine. Sci. Transl. Med. 2013, 5, 212fs41. [Google Scholar] [CrossRef] [PubMed]
- Discher, D.E. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, O.; Mierke, C.T.; Käs, J.A. Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter 2011, 7, 11488–11495. [Google Scholar] [CrossRef]
- Suresh, S.; Spatz, J.; Mills, J.P.; Micoulet, A.; Dao, M.; Lim, C.T.; Beil, M.; Seufferlein, T. Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 2005, 1, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Guck, J.; Schinkinger, S.; Lincoln, B.; Wottawah, F.; Ebert, S.; Romeyke, M.; Lenz, D.; Erickson, H.M.; Ananthakrishnan, R.; Mitchell, D. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 2005, 88, 3689–3698. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.B.; Collinsworth, A.M.; Reichert, W.M.; Kraus, W.E.; Truskey, G.A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 2001, 34, 1545–1553. [Google Scholar] [CrossRef]
- Wang, N.; Butler, J.P.; Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993, 260, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.-S.; Dufour, S.; Thiery, J.P.; Perez, E.; Pincet, F. Johnson-Kendall-Roberts theory applied to living cells. Phys. Rev. Lett. 2005, 94, 028102. [Google Scholar] [CrossRef] [PubMed]
- Shojaei-Baghini, E.; Zheng, Y.; Jewett, M.A.S.; Geddie, W.B.; Sun, Y. Mechanical characterization of benign and malignant urothelial cells from voided urine. Appl. Phys. Lett. 2013, 102, 123704. [Google Scholar] [CrossRef]
- Fritsch, A.; Höckel, M.; Kiessling, T.; Nnetu, K.D.; Wetzel, F.; Zink, M.; Käs, J.A. Are biomechanical changes necessary for tumour progression? Nat. Phys. 2010, 6, 730–732. [Google Scholar] [CrossRef]
- Zheng, Y.; Wen, J.; Nguyen, J.; Cachia, M.A.; Wang, C.; Sun, Y. Decreased deformability of lymphocytes in chronic lymphocytic leukemia. Sci. Rep. 2015, 5, 7613–7615. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, H.S.; Frazier, A.B.; Chen, Z.G.; Shin, D.M.; Han, A. Whole-Cell Impedance Analysis for Highly and Poorly Metastatic Cancer Cells. J. Microelectromech. Syst. 2009, 18, 808–817. [Google Scholar]
- Tarhan, M.C.; Yokokawa, R.; Jalabert, L.; Collard, D.; Fujita, H. Pick-and-Place Assembly of Single Microtubules. Small 2017, 16, 1701136. [Google Scholar] [CrossRef] [PubMed]
- Tarhan, M.C.; Lafitte, N.; Tauran, Y.; Jalabert, L.; Kumemura, M.; Perret, G.; Kim, B.; Coleman, A.W.; Fujita, H.; Collard, D. A rapid and practical technique for real-time monitoring of biomolecular interactions using mechanical responses of macromolecules. Sci. Rep. 2016, 6, 28001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baëtens, T.; Perret, G.; Takayama, Y.; Kumemura, M.; Jalabert, L.; Meignan, S.; Lagadec, C.; Fujita, H.; Collard, D.; Tarhan, M.C. A practical single cell analysis method for mechanical characterization of cancer cells. In Proceedings of the IEEE 30th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 22–26 January 2017; pp. 608–611. [Google Scholar]
- Perret, G.; Lacornerie, T.; Manca, F.; Giordano, S.; Kumemura, M.; Lafitte, N.; Jalabert, L.; Tarhan, M.C.; Lartigau, E.F.; Cleri, F.; et al. Real-time mechanical characterization of DNA degradation under therapeutic X-rays and its theoretical modeling. Microsyst. Nanoeng. 2016, 2, 16062. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, H.; Sakuma, S.; Kaneko, M.; Arai, F. On-Chip Method to Measure Mechanical Characteristics of a Single Cell by Using Moiré Fringe. Micromachines 2015, 6, 660–673. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.; Sakuma, S.; Kera, K.; Uozumi, N.; Arai, F. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip. Lab Chip 2018, 18, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Nishida, S.; Lambert, P.; Kawakatsu, H.; Fujita, H. High-resolution cantilever biosensor resonating at air–liquid in a microchannel. Lab Chip 2011, 11, 4187–4193. [Google Scholar] [CrossRef] [PubMed]
- Yamahata, C.; Collard, D.; Legrand, B.; Takekawa, T.; Kumemura, M.; Hashiguchi, G.; Fujita, H. Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules. J. Microelectromech. Syst. 2008, 17, 623–631. [Google Scholar] [CrossRef]
- Legtenberg, R.; Groeneveld, A.; Elwenspoek, M. Comb-drive actuators for large displacements. J. Micromech. Microeng. 1996, 6, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Lafitte, N.; Haddab, Y.; Le Gorrec, Y.; Guillou, H.; Kumemura, M.; Jalabert, L.; Collard, D.; Fujita, H. Improvement of silicon nanotweezers sensitivity for mechanical characterization of biomolecules using closed-loop control. IEEE/ASME Trans. Mechatron. 2014, 20, 1418–1427. [Google Scholar] [CrossRef]
- Yu, S.; Fry, S.N.; Potasek, D.P.; Bell, D.J.; Nelson, B.J. Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. J. Microelectromech. Syst. 2005, 14, 4–11. [Google Scholar] [Green Version]
- Montasser, I.; Coleman, A.W.; Tauran, Y.; Perret, G.; Jalabert, L.; Collard, D.; Kim, B.J.; Tarhan, M.C. Direct measurement of the mechanism by which magnesium specifically modifies the mechanical properties of DNA. Biomicrofluidics 2017, 11, 051102. [Google Scholar] [CrossRef] [PubMed]
Device | Compressing Side | Sensing Side | |||
---|---|---|---|---|---|
Spring Shape | Spring Constant (N/m) | Comb Tooth Length/Overlap (µm) | Spring Shape | Spring Constant (N/m) | |
Design 1 | Crab-leg | 30 | 20/6 | Crab-leg | 25 |
Design 2 | Folded | 40 | 20/4 | Crab-leg | 5 |
Design 3 | Folded | 40 | 30/4 | Crab-leg | 25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takayama, Y.; Perret, G.; Kumemura, M.; Ataka, M.; Meignan, S.; Karsten, S.L.; Fujita, H.; Collard, D.; Lagadec, C.; Tarhan, M.C. Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization. Micromachines 2018, 9, 275. https://doi.org/10.3390/mi9060275
Takayama Y, Perret G, Kumemura M, Ataka M, Meignan S, Karsten SL, Fujita H, Collard D, Lagadec C, Tarhan MC. Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization. Micromachines. 2018; 9(6):275. https://doi.org/10.3390/mi9060275
Chicago/Turabian StyleTakayama, Yuki, Grégoire Perret, Momoko Kumemura, Manabu Ataka, Samuel Meignan, Stanislav L. Karsten, Hiroyuki Fujita, Dominique Collard, Chann Lagadec, and Mehmet Cagatay Tarhan. 2018. "Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization" Micromachines 9, no. 6: 275. https://doi.org/10.3390/mi9060275
APA StyleTakayama, Y., Perret, G., Kumemura, M., Ataka, M., Meignan, S., Karsten, S. L., Fujita, H., Collard, D., Lagadec, C., & Tarhan, M. C. (2018). Developing a MEMS Device with Built-in Microfluidics for Biophysical Single Cell Characterization. Micromachines, 9(6), 275. https://doi.org/10.3390/mi9060275