Micromachined Resonant Frequency Tuning Unit for Torsional Resonator
<p>Schematics of frequency tuning units integrated with torsional resonators: (<b>a</b>) Shaft-widening type and (<b>b</b>) shaft-holding type. (<b>c</b>) Schematic layout of staggered vertical comb (SVC)-based torsional resonator. The micromirror is designed to optically read the torsional angle of the resonator. (Inset: close-up view of the SVC set defined on different silicon layers. Upper and lower layers are colored in white and green, respectively). Reproduced with permission from [<a href="#B26-micromachines-08-00342" class="html-bibr">26</a>].</p> "> Figure 2
<p>Design of (<b>a</b>) shaft-widening and (<b>b</b>) shaft-holding type frequency tuning units. Linear motion from the chevron thermal actuator (inset figure) is transformed and amplified to widen the gap between the tilted shafts (shaft-widening type), or to mechanically restrict the rotational motion of the shaft (shaft-holding type).</p> "> Figure 3
<p>Schematic view of shaft-holding mechanism. (<b>a</b>) By the driving force from the chevron thermal actuator, the contact between the shaft-holding flexures and the torsional shaft starts to be formed from the middle of the torsional shaft; (<b>b</b>) As the shaft-holder moves further, the shaft-holding flexure is elastically deformed, resulting in a gradual increase in contact area.</p> "> Figure 4
<p>Electrical isolation design to avoid short circuit formation and charge leakage between the chevron thermal actuator and the electrostatic actuator.</p> "> Figure 5
<p>Finite element analysis (FEA) results: (<b>a</b>) Required force from the chevron thermal actuator to achieve full-contact between the shaft-holder and torsional shaft (shaft-holding type); (<b>b</b>) Estimated torsional stiffness change by shaft-widening type (<b>c</b>) Estimated torsional stiffness change by shaft-holding type. ‘No separation mode’ and ‘separation mode’ correspond to the restriction modes illustrated in <a href="#micromachines-08-00342-f006" class="html-fig">Figure 6</a>a,b, respectively.</p> "> Figure 6
<p>The cross-sectional view of the torsional shaft and shaft-holding flexure, showing two different restriction modes between the torsion bar and shaft-holding flexure. (<b>a</b>) No separation mode: the shaft-holding flexure is torsionally deformed together with the torsional shaft. The areal contact is maintained; (<b>b</b>) Separation mode: the areal contact is not maintained and the separation between the torsional shaft and shaft-holding flexure exist.</p> "> Figure 7
<p>Fabrication process for the torsional resonator integrated with frequency tuning unit. The device is fabricated on a double silicon-on-insulator (DSOI) wafer. Reproduced with permission from [<a href="#B26-micromachines-08-00342" class="html-bibr">26</a>].</p> "> Figure 8
<p>Scanning electron microscope (SEM) images of the fabricated devices: (<b>a</b>) Shaft-widening type and (<b>b</b>) shaft-holding type. Reproduced with permission from [<a href="#B26-micromachines-08-00342" class="html-bibr">26</a>].</p> "> Figure 9
<p>Frequency response change achieved by the shaft-widening type. Data points are fitted with the Lorentzian function.</p> "> Figure 10
<p>Frequency response change achieved by the shaft-holding type. Data points are fitted with the Lorentzian function. Reproduced with permission from [<a href="#B26-micromachines-08-00342" class="html-bibr">26</a>].</p> "> Figure 11
<p>Measured and simulated results for resonant frequency change as a function of applied tuning voltage: (<b>a</b>) The shaft-widening type; (<b>b</b>) the shaft-holding type.</p> ">
Abstract
:1. Introduction
2. Design and Principle
3. Finite Element Analysis
4. Fabrication
5. Result
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, W.M.; Hu, K.M.; Peng, Z.K.; Meng, G. Tunable micro- and nanomechanical resonators. Sensors 2015, 15, 26478–26566. [Google Scholar] [CrossRef] [PubMed]
- Toshiyoshi, H.; Fujita, H. Electrostatic micro torsion mirrors for an optical switch matrix. J. Microelectromech. Syst. 1996, 5, 231–237. [Google Scholar] [CrossRef]
- Hwang, K.S.; Lee, S.M.; Kim, S.K.; Lee, J.H.; Kim, T.S. Micro- and nanocantilever devices and systems for biomolecule detection. Annu. Rev. Anal. Chem. 2009, 2, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Madou, M.J. Fundamentals of Microfabrication and Nanotechnology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-08-49331-80-0. [Google Scholar]
- Tang, W.C.; Nguyen, T.-C.H.; Judy, M.W.; Howe, R.T. Electrostatic-comb drive of lateral polysilicon resonators. Sens. Actuators A Phys. 1990, 21, 328–331. [Google Scholar] [CrossRef]
- Chiao, M.; Lin, L. Post-packaging frequency tuning of microresonators by pulsed laser deposition. J. Micromech. Microeng. 2004, 14, 1742–1747. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Brown, A.R. Frequency trimming for mems resonator oscillators. In Proceedings of the IEEE International Conference on Frequency Control Symposium, Geneva, Switzerland, 29 May–1 June 2007; pp. 1088–1091. [Google Scholar]
- Yong, Y.-K.; Vig, J.R. Resonator surface contamination—A cause of frequency fluctuations? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Koskenvuori, M.; Mattila, T.; Häärä, A.; Kiihamäki, J.; Tittonen, I.; Oja, A.; Seppä, H. Long-term stability of single-crystal silicon microresonators. Sens. Actuators A Phys. 2004, 115, 23–27. [Google Scholar] [CrossRef]
- Enderling, S.; Hedley, J.; Jiang, L.D.; Cheung, R.; Zorman, C.; Mehregany, M.; Walton, A.J. Characterization of frequency tuning using focused ion beam platinum deposition. J. Micromech. Microeng. 2006, 17, 213–219. [Google Scholar] [CrossRef]
- Joachim, D.; Lin, L. Characterization of selective polysilicon deposition for mems resonator tuning. J. Microelectromech. Syst. 2003, 12, 193–200. [Google Scholar] [CrossRef]
- Syms, R.R.A.; Moore, D.F. Focused ion beam tuning of in-plane vibrating micromechanical resonators. Electron. Lett. 1999, 35, 1277–1278. [Google Scholar] [CrossRef]
- Witkamp, B.; Poot, M.; Pathangi, H.; Hüttel, A.; Van der Zant, H. Self-detecting gate-tunable nanotube paddle resonators. Appl. Phys. Lett. 2008, 93, 111909. [Google Scholar] [CrossRef]
- Eun, Y.; Kim, J.; Lin, L. Resonant-frequency tuning of angular vertical comb-driven microscanner. Micro Nano Syst. Lett. 2014, 2, 4. [Google Scholar] [CrossRef]
- Lee, W.-S.; Kwon, K.-C.; Kim, B.-K.; Cho, J.-H.; Youn, S.-K. Frequency-shifting analysis of electrostatically tunable micro-mechanical actuator. CMES Comp. Model. Eng. Sci. 2004, 5, 279–286. [Google Scholar]
- Gallacher, B.J.; Hedley, J.; Burdess, J.S.; Harris, A.J.; Rickard, A.; King, D.O. Electrostatic correction of structural imperfections present in a microring gyroscope. J. Microelectromech. Syst. 2005, 14, 221–234. [Google Scholar] [CrossRef]
- Lee, K.B.; Cho, Y.-H. A triangular electrostatic comb array for micromechanical resonant frequency tuning. Sens. Actuators A Phys. 1998, 70, 112–117. [Google Scholar] [CrossRef]
- Lee, K.B.; Lin, L.; Cho, Y.-H. A closed-form approach for frequency tunable comb resonators with curved finger contour. Sens. Actuators A Phys. 2008, 141, 523–529. [Google Scholar] [CrossRef]
- Jensen, B.D.; Mutlu, S.; Miller, S.; Kurabayashi, K.; Allen, J.J. Shaped comb fingers for tailored electromechanical restoring force. J. Microelectromech. Syst. 2003, 12, 373–383. [Google Scholar] [CrossRef]
- Morgan, B.; Ghodssi, R. Vertically-shaped tunable mems resonators. J. Microelectromech. Syst. 2008, 17, 85–92. [Google Scholar] [CrossRef]
- Scheibner, D.; Mehner, J.; Reuter, D.; Kotarsky, U.; Gessner, T.; Dötzel, W. Characterization and self-test of electrostatically tunable resonators for frequency selective vibration measurements. Sens. Actuators A Phys. 2004, 111, 93–99. [Google Scholar] [CrossRef]
- Remtema, T.; Lin, L. Active frequency tuning for micro resonators by localized thermal stressing effects. Sens. Actuators A Phys. 2001, 91, 326–332. [Google Scholar] [CrossRef]
- Syms, R.R. Electrothermal frequency tuning of folded and coupled vibrating micromechanical resonators. J. Microelectromech. Syst. 1998, 7, 164–171. [Google Scholar] [CrossRef]
- Elata, D.; Leus, V.; Hirshberg, A.; Salomon, O.; Naftali, M. A novel tilting micromirror with a triangular waveform resonance response and an adjustable resonance frequency for raster scanning applications. In Proceedings of the TRANSDUCERS Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1509–1512. [Google Scholar]
- Shmilovich, T.; Krylov, S. Linear tuning of the resonant frequency in tilting oscillators by an axially loaded suspension flexure. In Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems, Wuhan, China, 13–17 January 2008; pp. 657–660. [Google Scholar]
- Lee, J.-I.; Park, S.; Eun, Y.; Jeong, B.; Kim, J. Resonant frequency tuning of torsional microscanner by mechanical restriction using mems actuator. In Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 164–167. [Google Scholar]
- Ya’akobovitz, A.; Krylov, S.; Shacham-Diamand, Y. Large angle SOI tilting actuator with integrated motion transformer and amplifier. Sens. Actuators A Phys. 2008, 148, 422–436. [Google Scholar] [CrossRef]
- Lott, C.D.; McLain, T.W.; Harb, J.N.; Howell, L.L. Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sens. Actuators A Phys. 2002, 101, 239–250. [Google Scholar] [CrossRef]
- Davis, W.O. Measuring quality factor from a nonlinear frequency response with jump discontinuities. J. Microelectromech. Syst. 2011, 20, 968–975. [Google Scholar] [CrossRef]
Torsional Resonator | Mirror diameter | 800 μm |
Length/width of straight shaft | 1050 μm /10 μm | |
Length/width of tilted shaft | 600 μm /10 μm | |
Length/width of Comb | 200 μm /5 μm | |
The number of moving/fixed Comb | 72/73 | |
Thickness | 20 μm | |
Scissor Mechanism | Total length/width | 2240 μm /680 μm |
Length/width of shuttle | 300 μm /300 μm | |
Length/width of hinges | 60 μm /5 μm | |
Shaft-Holder | Total length | 1000 μm |
Width of shaft-holding flexure | 5 μm | |
Chevron Thermal Actuator | Length/width of chevron beam | 700 μm /10 μm |
Number of chevron beam | 20 | |
Angle of chevron beam | 1.06° |
Tuning Voltage (V) | Resonant Frequency (kHz) | Tuning Ratio (%) |
---|---|---|
0 V | 1.507 | - |
10 V | 1.560 | 3.31 |
12 V | 1.593 | 5.29 |
Tuning Voltage (V) | Resonant Frequency (kHz) | Tuning Ratio (%) |
---|---|---|
0 V | 1.698 | - |
8 V | 1.749 | 3.03 |
10 V | 1.826 | 7.05 |
12 V | 1.880 | 10.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-I.; Jeong, B.; Park, S.; Eun, Y.; Kim, J. Micromachined Resonant Frequency Tuning Unit for Torsional Resonator. Micromachines 2017, 8, 342. https://doi.org/10.3390/mi8120342
Lee J-I, Jeong B, Park S, Eun Y, Kim J. Micromachined Resonant Frequency Tuning Unit for Torsional Resonator. Micromachines. 2017; 8(12):342. https://doi.org/10.3390/mi8120342
Chicago/Turabian StyleLee, Jae-Ik, Bongwon Jeong, Sunwoo Park, Youngkee Eun, and Jongbaeg Kim. 2017. "Micromachined Resonant Frequency Tuning Unit for Torsional Resonator" Micromachines 8, no. 12: 342. https://doi.org/10.3390/mi8120342
APA StyleLee, J. -I., Jeong, B., Park, S., Eun, Y., & Kim, J. (2017). Micromachined Resonant Frequency Tuning Unit for Torsional Resonator. Micromachines, 8(12), 342. https://doi.org/10.3390/mi8120342