Evolution of Liver Resection for Hepatocellular Carcinoma: Change Point Analysis of Textbook Outcome over Twenty Years
<p>Multiple change point analysis was performed to identify distinct change points in textbook outcome achievement. (<b>A</b>) Comparison of Bayesian Information Criterion (BIC) values for different numbers of change points revealed that three change points were optimal. (<b>B</b>) The number of breakpoints was confirmed as statistically significant based on ordinary least-squares-based cumulative sum test. (<b>C</b>) Three change points were identified at year 2006, 2012, and 2017.</p> "> Figure 2
<p>Trends in number of annual operations during each time interval.</p> "> Figure 3
<p>Achievement of overall textbook outcome and its individual components over time.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection and Definitions
2.3. Textbook Outcomes
2.4. Multiple Change Point Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Operative Parameters and Postoperative Outcomes
3.3. Pathologic Features
3.4. Achievement of TO
3.5. Multivariable Analysis for TO Achievement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aghayan, D.L.; Kazaryan, A.M.; Dagenborg, V.J.; Røsok, B.I.; Fagerland, M.W.; Waaler Bjørnelv, G.M.; Kristiansen, R.; Flatmark, K.; Fretland, Å.A.; Edwin, B.; et al. Long-Term Oncologic Outcomes After Laparoscopic Versus Open Resection for Colorectal Liver Metastases: A Randomized Trial. Ann. Intern. Med. 2021, 174, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ciria, R.; Cherqui, D.; Geller, D.A.; Briceno, J.; Wakabayashi, G. Comparative Short-term Benefits of Laparoscopic Liver Resection: 9000 Cases and Climbing. Ann. Surg. 2016, 263, 761–777. [Google Scholar] [CrossRef]
- Brudvik, K.W.; Mise, Y.; Conrad, C.; Zimmitti, G.; Aloia, T.A.; Vauthey, J.N. Definition of Readmission in 3041 Patients Undergoing Hepatectomy. J. Am. Coll. Surg. 2015, 221, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Merath, K.; Chen, Q.; Bagante, F.; Beal, E.; Akgul, O.; Dillhoff, M.; Cloyd, J.M.; Pawlik, T.M. Textbook Outcomes Among Medicare Patients Undergoing Hepatopancreatic Surgery. Ann. Surg. 2020, 271, 1116–1123. [Google Scholar] [CrossRef]
- Kolfschoten, N.E.; Kievit, J.; Gooiker, G.A.; van Leersum, N.J.; Snijders, H.S.; Eddes, E.H.; Tollenaar, R.A.; Wouters, M.W.; Marang-van de Mheen, P.J. Focusing on desired outcomes of care after colon cancer resections; hospital variations in ‘textbook outcome’. Eur. J. Surg. Oncol. 2013, 39, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Hyer, J.M.; Beane, J.D.; Spolverato, G.; Tsilimigras, D.I.; Diaz, A.; Paro, A.; Dalmacy, D.; Pawlik, T.M. Trends in Textbook Outcomes over Time: Are Optimal Outcomes Following Complex Gastrointestinal Surgery for Cancer Increasing? J. Gastrointest. Surg. 2022, 26, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Karthaus, E.G.; Lijftogt, N.; Busweiler, L.A.D.; Elsman, B.H.P.; Wouters, M.W.J.M.; Vahl, A.C.; Hamming, J.F.; Dutch Society of Vascular Surgery; the Steering Committee of the Dutch Surgical Aneurysm Audit; the Dutch Institute for Clinical Auditing. Textbook Outcome: A Composite Measure for Quality of Elective Aneurysm Surgery. Ann. Surg. 2017, 266, 898–904. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Ciria, R.; Gomez-Luque, I.; Ocaña, S.; Cipriani, F.; Halls, M.; Briceño, J.; Okuda, Y.; Troisi, R.; Rotellar, F.; Soubrane, O.; et al. A Systematic Review and Meta-Analysis Comparing the Short- and Long-Term Outcomes for Laparoscopic and Open Liver Resections for Hepatocellular Carcinoma: Updated Results from the European Guidelines Meeting on Laparoscopic Liver Surgery, Southampton, UK, 2017. Ann. Surg. Oncol. 2019, 26, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Haney, C.M.; Studier-Fischer, A.; Probst, P.; Fan, C.; Müller, P.C.; Golriz, M.; Diener, M.K.; Hackert, T.; Müller-Stich, B.P.; Mehrabi, A.; et al. A systematic review and meta-analysis of randomized controlled trials comparing laparoscopic and open liver resection. HPB 2021, 23, 1467–1481. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Sahara, K.; Moris, D.; Mehta, R.; Paredes, A.Z.; Ratti, F.; Marques, H.P.; Soubrane, O.; Lam, V.; Poultsides, G.A.; et al. Assessing Textbook Outcomes Following Liver Surgery for Primary Liver Cancer Over a 12-Year Time Period at Major Hepatobiliary Centers. Ann. Surg. Oncol. 2020, 27, 3318–3327. [Google Scholar] [CrossRef] [PubMed]
- de Graaff, M.R.; Elfrink, A.K.E.; Buis, C.I.; Swijnenburg, R.J.; Erdmann, J.I.; Kazemier, G.; Verhoef, C.; Mieog, J.S.D.; Derksen, W.J.M.; van den Boezem, P.B.; et al. Defining Textbook Outcome in liver surgery and assessment of hospital variation: A nationwide population-based study. Eur. J. Surg. Oncol. 2022, 48, 2414–2423. [Google Scholar] [CrossRef]
- Görgec, B.; Benedetti Cacciaguerra, A.; Lanari, J.; Russolillo, N.; Cipriani, F.; Aghayan, D.; Zimmitti, G.; Efanov, M.; Alseidi, A.; Mocchegiani, F.; et al. Assessment of Textbook Outcome in Laparoscopic and Open Liver Surgery. JAMA Surg. 2021, 156, e212064. [Google Scholar] [CrossRef]
- D’Silva, M.; Cho, J.Y.; Han, H.S.; Yoon, Y.S.; Lee, H.W.; Lee, J.S.; Lee, B.; Jo, Y.; Lee, E.; Kang, M.; et al. The value of analyzing textbook outcomes after laparoscopic hepatectomy-a narrative review. Transl. Cancer. Res. 2023, 12, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Görgec, B.; Benedetti Cacciaguerra, A.; Pawlik, T.M.; Aldrighetti, L.A.; Alseidi, A.A.; Cillo, U.; Kokudo, N.; Geller, D.A.; Wakabayashi, G.; Asbun, H.J.; et al. An International Expert Delphi Consensus on Defining Textbook Outcome in Liver Surgery (TOLS). Ann. Surg. 2023, 277, 821–828. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Strasberg, S.M.; Belghiti, J.; Clavien, P.A.; Gadzijev, E.; Garden, J.O.; Lau, W.Y.; Makuuchi, M.; Strong, R.W. The Brisbane 2000 Terminology of Liver Anatomy and Resections. HPB 2000, 2, 333–339. [Google Scholar] [CrossRef]
- Wakabayashi, G.; Cherqui, D.; Geller, D.A.; Abu Hilal, M.; Berardi, G.; Ciria, R.; Abe, Y.; Aoki, T.; Asbun, H.J.; Chan, A.C.Y.; et al. The Tokyo 2020 terminology of liver anatomy and resections: Updates of the Brisbane 2000 system. J. Hepato-Biliary-Pancreat. Sci. 2022, 29, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. strucchange: An R Package for Testing for Structural Change in Linear Regression Models. J. Stat. Softw. 2002, 7, 38. [Google Scholar] [CrossRef]
- Zeileis, A. Package ‘Strucchange’. Available online: https://cran.r-project.org/web/packages/strucchange/strucchange.pdf (accessed on 8 March 2024).
- Otto, S.A. Comparison of Change Point Detection Methods. Available online: https://www.marinedatascience.co/blog/2019/09/28/comparison-of-change-point-detection-methods/ (accessed on 8 March 2024).
- Tsilimigras, D.I.; Mehta, R.; Moris, D.; Sahara, K.; Bagante, F.; Paredes, A.Z.; Farooq, A.; Ratti, F.; Marques, H.P.; Silva, S.; et al. Utilizing Machine Learning for Pre- and Postoperative Assessment of Patients Undergoing Resection for BCLC-0, A and B Hepatocellular Carcinoma: Implications for Resection Beyond the BCLC Guidelines. Ann. Surg. Oncol. 2020, 27, 866–874. [Google Scholar] [CrossRef] [PubMed]
- LiverGroup.org Collaborative. Outcomes of elective liver surgery worldwide: A global, prospective, multicenter, cross-sectional study. Int. J. Surg. 2023, 109, 3954–3966. [Google Scholar] [CrossRef]
- van der Kaaij, R.T.; de Rooij, M.V.; van Coevorden, F.; Voncken, F.E.M.; Snaebjornsson, P.; Boot, H.; van Sandick, J.W. Using textbook outcome as a measure of quality of care in oesophagogastric cancer surgery. Br. J. Surg. 2018, 105, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Spolverato, G.; Paro, A.; Capelli, G.; Dalmacy, D.; Poultsides, G.A.; Fields, R.C.; Weber, S.M.; Votanopoulos, K.I.; He, J.; Maithel, S.K.; et al. Surgical treatment of gastric adenocarcinoma: Are we achieving textbook oncologic outcomes for our patients? J. Surg. Oncol. 2022, 125, 621–630. [Google Scholar] [CrossRef]
- Ten Berge, M.G.; Beck, N.; Steup, W.H.; Verhagen, A.F.T.M.; van Brakel, T.J.; Schreurs, W.H.; Wouters, M.W.J.M.; Dutch Lung Cancer Audit for Surgery Group. Textbook outcome as a composite outcome measure in non-small-cell lung cancer surgery. Eur. J. Cardiothorac. Surg. 2021, 59, 92–99. [Google Scholar] [CrossRef]
- D’Silva, M.; Cho, J.Y.; Han, H.S.; Yoon, Y.S.; Lee, H.W.; Lee, J.S.; Lee, B.; Kim, M.; Jo, Y. Association between achieving textbook outcomes and better survival after laparoscopic liver resection in the anterolateral segments in patients with hepatocellular carcinoma. J. Hepato-Biliary-Pancreat. Sci. 2022, 29, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Neuwirth, M.G.; Bierema, C.; Sinnamon, A.J.; Fraker, D.L.; Kelz, R.R.; Roses, R.E.; Karakousis, G.C. Trends in major upper abdominal surgery for cancer in octogenarians: Has there been a change in patient selection? Cancer 2018, 124, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Kimura, T.; Kita, R.; Osaki, Y. Treatment for hepatocellular carcinoma in elderly patients: A literature review. J. Cancer 2013, 4, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Iakova, P.; Awad, S.S.; Timchenko, N.A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell 2003, 113, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Lee, Y.J.; Kim, K.H.; Ahn, C.S.; Moon, D.B.; Ha, T.Y.; Song, G.W.; Jung, D.H.; Lee, S.G. Long-Term Outcome After Resection of Huge Hepatocellular Carcinoma ≥ 10 cm: Single-Institution Experience with 471 Patients. World J. Surg. 2015, 39, 2519–2528. [Google Scholar] [CrossRef]
- Wei, C.Y.; Chen, P.C.; Chau, G.Y.; Lee, R.C.; Chen, P.H.; Huo, T.I.; Huang, Y.H.; Su, Y.H.; Hou, M.C.; Wu, J.C.; et al. Comparison of prognosis between surgical resection and transarterial chemoembolization for patients with solitary huge hepatocellular carcinoma. Ann. Transl. Med. 2020, 8, 238. [Google Scholar] [CrossRef]
- Korean Liver Cancer Association (KLCA); National Cancer Center (NCC) Korea. 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. J. Liver Cancer 2023, 23, 1–120. [Google Scholar] [CrossRef] [PubMed]
- Goh, M.J.; Sinn, D.H.; Kim, J.M.; Lee, M.W.; Hyun, D.H.; Yu, J.I.; Hong, J.Y.; Choi, M.S. Clinical practice guideline and real-life practice in hepatocellular carcinoma: A Korean perspective. Clin. Mol. Hepatol. 2023, 29, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H. Yoon et al. Hepatocellular Carcinoma in Korea: An Analysis of the 2015 Korean Nationwide Cancer Registry. J. Liver Cancer 2022, 22, 207. [Google Scholar] [CrossRef]
- Kim, D.Y.; Toan, B.N.; Tan, C.K.; Hasan, I.; Setiawan, L.; Yu, M.L.; Izumi, N.; Huyen, N.N.; Chow, P.K.; Mohamed, R.; et al. Utility of combining PIVKA-II and AFP in the surveillance and monitoring of hepatocellular carcinoma in the Asia-Pacific region. Clin. Mol. Hepatol. 2023, 29, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Mownah, O.A.; Aroori, S. The Pringle maneuver in the modern era: A review of techniques for hepatic inflow occlusion in minimally invasive liver resection. Ann. Hepato-Biliary-Pancreat. Surg. 2023, 27, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Cloyd, J.M.; Mizuno, T.; Kawaguchi, Y.; Lillemoe, H.A.; Karagkounis, G.; Omichi, K.; Chun, Y.S.; Conrad, C.; Tzeng, C.D.; Odisio, B.C.; et al. Comprehensive Complication Index Validates Improved Outcomes Over Time Despite Increased Complexity in 3707 Consecutive Hepatectomies. Ann. Surg. 2020, 271, 724–731. [Google Scholar] [CrossRef]
- Stephanos, M.; Stewart, C.M.B.; Mahmood, A.; Brown, C.; Hajibandeh, S.; Hajibandeh, S.; Satyadas, T. Low versus standard central venous pressure during laparoscopic liver resection: A systematic review, meta-analysis and trial sequential analysis. Ann. Hepato-Biliary-Pancreat. Surg. 2024, 28, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Day, R.W.; Brudvik, K.W.; Vauthey, J.N.; Conrad, C.; Gottumukkala, V.; Chun, Y.S.; Katz, M.H.; Fleming, J.B.; Lee, J.E.; Aloia, T.A. Advances in hepatectomy technique: Toward zero transfusions in the modern era of liver surgery. Surgery 2016, 159, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Kingham, T.P.; Correa-Gallego, C.; D’Angelica, M.I.; Gönen, M.; DeMatteo, R.P.; Fong, Y.; Allen, P.J.; Blumgart, L.H.; Jarnagin, W.R. Hepatic parenchymal preservation surgery: Decreasing morbidity and mortality rates in 4,152 resections for malignancy. J. Am. Coll. Surg. 2015, 220, 471–479. [Google Scholar] [CrossRef]
- Aloia, T.A.; Fahy, B.N.; Fischer, C.P.; Jones, S.L.; Duchini, A.; Galati, J.; Gaber, A.O.; Ghobrial, R.M.; Bass, B.L. Predicting poor outcome following hepatectomy: Analysis of 2313 hepatectomies in the NSQIP database. HPB 2009, 11, 510–515. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, C.; Gu, S.; Yan, X.; Jia, W.; Mao, L.; Qiu, Y. Anatomical versus non-anatomical resection for solitary hepatocellular carcinoma without macroscopic vascular invasion: A propensity score matching analysis. J. Gastroenterol. Hepatol. 2017, 32, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Kaibori, M.; Kon, M.; Kitawaki, T.; Kawaura, T.; Hasegawa, K.; Kokudo, N.; Ariizumi, S.; Beppu, T.; Ishizu, H.; Kubo, S.; et al. Comparison of anatomic and non-anatomic hepatic resection for hepatocellular carcinoma. J. Hepato-Biliary-Pancreat. Sci. 2017, 24, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Yang, K.; Cao, L.; Lu, Y.; Zheng, B.; Li, X.; Wang, X.; Li, J.; Chen, J.; Zheng, S. Laparoscopic Anatomical Versus Non-anatomical hepatectomy in the Treatment of Hepatocellular Carcinoma: A randomised controlled trial. Int. J. Surg. 2022, 102, 106652. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Cho, J.Y.; Han, H.S.; Yoon, Y.S.; Lee, H.W.; Lee, J.S.; Kim, M.; Jo, Y. Laparoscopic anatomical versus non-anatomical liver resection for hepatocellular carcinoma in the posterosuperior segments: A propensity score matched analysis. Hepatobiliary Surg. Nutr. 2023, 12, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Huang, T.; Shen, S.L.; Hua, Y.P.; Hu, W.J.; Kuang, M.; Peng, B.G.; Liang, L.J. Anatomical versus non-anatomical liver resection for hepatocellular carcinoma exceeding Milan criteria. Br. J. Surg. 2017, 104, 118–127. [Google Scholar] [CrossRef] [PubMed]
Group 1 (n = 54) | Group 2 (n = 276) | Group 3 (n = 415) | Group 4 (n = 589) | p-Value | |
---|---|---|---|---|---|
Age (years) | 59 (52–68) | 59 (51–67) | 61 (52–69) | 63 (56–70) | <0.0001 |
Sex (male:female) | 40:14 | 211:65 | 342:73 | 476:113 | 0.163 |
Body mass index (kg/m2, mean ± SD) | 24.4 ± 3.3 | 23.7 ± 3.2 | 24.3 ± 3.4 | 25.1 ± 3.3 | <0.0001 |
Underlying disease | |||||
Hypertension | 8 (14.8) | 99 (35.9) | 163 (39.3) | 310 (52.6) | <0.0001 |
Diabetes mellitus | 2 (3.7) | 68 (24.6) | 113 (27.2) | 186 (31.6) | <0.0001 |
Dyslipidemia | 2 (3.7) | 10 (3.6) | 33 (8.0) | 88 (14.9) | <0.0001 |
Heart disease | 1 (1.9) | 7 (2.5) | 25 (6.0) | 59 (10.0) | 0.0001 |
Habits | |||||
Alcohol | 10 (18.5) | 108 (39.1) | 142 (34.2) | 312 (53.0) | <0.0001 |
Smoking | 8 (14.8) | 49 (17.8) | 112 (27.0) | 361 (61.3) | <0.0001 |
Child Pugh score | <0.0001 | ||||
A | 46 (85.2) | 264 (95.7) | 395 (95.2) | 581 (98.6) | |
B | 8 (14.8) | 12 (4.3) | 20 (4.8) | 8 (1.4) | |
MELD score | 7.8 (7.2–9.7) | 7.7 (7.0–8.9) | 7.5 (6.9–8.2) | 6.9 (6.4–7.8) | <0.0001 |
Group 1 (n = 54) | Group 2 (n = 276) | Group 3 (n = 415) | Group 4 (n = 589) | p-Value | |
---|---|---|---|---|---|
Operative method | <0.0001 | ||||
Open | 20 (37.0) | 121 (43.8) | 71 (17.1) | 135 (22.9) | |
Laparoscopic | 34 (63.0) | 155 (56.2) | 342 (82.4) | 447 (75.9) | |
Robotic | 0 | 0 | 2 (0.5) | 7 (1.2) | |
Resection extent | <0.0001 | ||||
Minor resection | 38 (70.4) | 194 (70.3) | 345 (83.1) | 486 (82.5) | |
Major resection | 16 (29.6) | 82 (29.7) | 70 (16.9) | 103 (17.5) | |
Anatomical resection | 33 (61.1) | 183 (66.3) | 210 (55.6) | 260 (44.1) | <0.0001 |
Tumor location | 0.665 | ||||
S1–5 | 32 (59.3) | 167 (60.5) | 247 (59.5) | 333 (56.5) | |
S6–8 | 22 (40.7) | 109 (39.5) | 168 (40.5) | 256 (43.5) | |
Operative time | 300 (220–418) | 280 (190–360) | 205 (145–300) | 145 (95–210) | <0.0001 |
Estimated blood loss | 800 (500–1475) | 500 (300–1000) | 350 (150–700) | 300 (100–600) | <0.0001 |
Transfusion | 24 (44.4) | 74 (26.8) | 51 (12.3) | 68 (11.5) | <0.0001 |
Complication | 19 (35.2) | 63 (22.8) | 90 (21.7) | 252 (42.8) | <0.0001 |
≥Clavien-Dindo grade IIIa | 13 (24.1) | 44 (15.9) | 52 (12.5) | 45 (7.6) | <0.0001 |
Length of hospital stay (days) | 11 (8–18) | 9 (7–12) | 6 (5–8) | 5 (4–7) | <0.0001 |
30-day readmission | 4 (7.4) | 16 (5.8) | 19 (4.6) | 9 (1.5) | 0.0009 |
30-day mortality | 0 | 2 (0.7) | 1 (0.2) | 3 (0.5) | 0.677 |
Group 1 (n = 54) | Group 2 (n = 276) | Group 3 (n = 415) | Group 4 (n = 589) | p-Value | |
---|---|---|---|---|---|
Size | 4.2 ± 3.3 | 4.0 ± 2.7 | 3.8 ± 3.1 | 3.8 ± 3.0 | 0.254 |
Number | 1 (1–3) | 1 (1–5) | 1 (1–5) | 1 (1–13) | 0.034 |
T stage | |||||
T1 | 26 (48.1) | 135 (48.9) | 194 (46.7) | 278 (47.2) | <0.0001 |
T2 | 14 (25.9) | 92 (33.3) | 162 (39.0) | 254 (43.1) | |
T3 | 5 (9.3) | 32 (11.6) | 27 (6.5) | 27 (4.6) | |
T4 | 2 (3.7) | 6 (2.2) | 25 (6.0) | 23 (3.9) | |
Surgical margin | 0.291 | ||||
R0 | 49 (90.7) | 263 (95.3) | 375 (90.4) | 543 (92.2) | |
R1 | 4 (7.4) | 12 (4.3) | 36 (8.7) | 38 (6.5) | |
Cirrhosis | 29 (53.7) | 173 (62.7) | 245 (59.0) | 185 (31.4) | <0.0001 |
Edmonson-Steiner grade (worst) | <0.0001 | ||||
1 | 1 (1.9) | 3 (1.1) | 6 (1.5) | 3 (0.5) | |
2 | 13 (24.1) | 75 (27.9) | 93 (23.3) | 89 (15.6) | |
3 | 30 (55.6) | 151 (56.1) | 241 (60.3) | 315 (55.3) | |
4 | 3 (5.6) | 29 (10.8) | 54 (13.5) | 158 (27.7) |
Univariable | Multivariable | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | ||||
<70 | Ref. | Ref. | ||
≥70 | 0.75 (0.58–0.98) | 0.032 | 0.71 (0.53–0.93) | 0.015 |
Body mass index | ||||
<25 | Ref. | Ref. | ||
≥25 | 1.34 (1.08–1.67) | 0.009 | 1.19 (0.94–1.51) | 0.150 |
Child-Pugh score | ||||
A | Ref. | Ref. | ||
B | 0.29 (0.14–0.57) | <0.001 | 0.41 (0.18–0.84) | 0.020 |
Operation method | ||||
Open | Ref. | Ref. | ||
Laparoscopic | 5.36 (4.01–7.25) | <0.001 | 4.30 (3.15–5.94) | <0.001 |
Robotic | 14.90 (3.51–102.00) | <0.001 | 11.20 (2.58–76.80) | 0.003 |
Resection extent | ||||
Minor | Ref. | Ref. | ||
Major | 0.34 (0.25–0.46) | <0.001 | 0.57 (0.41–0.80) | 0.001 |
Tumor location | ||||
S1-5 | Ref. | |||
S6-8 | 1.00 (0.80–1.24) | 0.999 | ||
Cirrhosis | ||||
No | Ref. | Ref. | ||
Yes | 0.71 (0.57–0.88) | 0.002 | 0.64 (0.50–0.81) | <0.001 |
pT | ||||
T1 | Ref. | Ref. | ||
T2 | 0.81 (0.64–1.02) | 0.079 | 1.00 (0.78–1.28) | 0.999 |
T3 | 0.29 (0.17–0.48) | <0.001 | 0.62 (0.35–1.08) | 0.100 |
T4 | 0.31 (0.16–0.56) | <0.001 | 0.71 (0.35–1.38) | 0.300 |
Edmonson-Steiner grade | ||||
1 | Ref. | |||
2 | 1.67 (0.53–6.28) | 0.400 | ||
3 | 2.03 (0.66–7.56) | 0.200 | ||
4 | 2.44 (0.77–9.21) | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Han, H.-S.; Lim, S.Y.; Joo, H.; Kim, J.; Kang, M.; Lee, B.; Lee, H.W.; Yoon, Y.-S.; Cho, J.Y. Evolution of Liver Resection for Hepatocellular Carcinoma: Change Point Analysis of Textbook Outcome over Twenty Years. Medicina 2025, 61, 12. https://doi.org/10.3390/medicina61010012
Park Y, Han H-S, Lim SY, Joo H, Kim J, Kang M, Lee B, Lee HW, Yoon Y-S, Cho JY. Evolution of Liver Resection for Hepatocellular Carcinoma: Change Point Analysis of Textbook Outcome over Twenty Years. Medicina. 2025; 61(1):12. https://doi.org/10.3390/medicina61010012
Chicago/Turabian StylePark, Yeshong, Ho-Seong Han, Seung Yeon Lim, Hyelim Joo, Jinju Kim, MeeYoung Kang, Boram Lee, Hae Won Lee, Yoo-Seok Yoon, and Jai Young Cho. 2025. "Evolution of Liver Resection for Hepatocellular Carcinoma: Change Point Analysis of Textbook Outcome over Twenty Years" Medicina 61, no. 1: 12. https://doi.org/10.3390/medicina61010012
APA StylePark, Y., Han, H. -S., Lim, S. Y., Joo, H., Kim, J., Kang, M., Lee, B., Lee, H. W., Yoon, Y. -S., & Cho, J. Y. (2025). Evolution of Liver Resection for Hepatocellular Carcinoma: Change Point Analysis of Textbook Outcome over Twenty Years. Medicina, 61(1), 12. https://doi.org/10.3390/medicina61010012