Diagnosis of Pain Deception Using Minnesota Multiphasic Personality Inventory-2 Based on XGBoost Machine Learning Algorithm: A Single-Blinded Randomized Controlled Trial
<p>Flow diagram of this study. D, deception; ND, non-deception.</p> "> Figure 2
<p>Comparison of sMMPI-2 scales between the D and ND groups. sMMPI-2, selected MMPI-2; D, deception; ND, non-deception. The abbreviations for the MMPI-2 scales are defined in <a href="#medicina-60-01989-t001" class="html-table">Table 1</a>. sMMPI-2 scales include F, Fb, Fp, Ds(F-K), KHS, Hy, HEA, Hy4, D, Ma, RCd, RC2, and DEP. *: <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>XGBoost analysis of the wMMPI-2 scales to classify the D and ND groups. wMMPI-2, whole MMPI-2; D, deception; ND, non-deception; 0, non-deception; 1, deception. Abbreviations for the MMPI-2 scales are defined in <a href="#medicina-60-01989-t001" class="html-table">Table 1</a>. (<b>a</b>) Confusion matrix; (<b>b</b>) feature importance depending on the f1-score.</p> "> Figure 4
<p>XGBoost analysis of sMMPI-2 scales to classify the D and ND groups. sMMPI-2, selected MMPI-2; D, deception; ND, non-deception; 0, non-deception; 1, deception. Abbreviations for the MMPI-2 scales are defined in <a href="#medicina-60-01989-t001" class="html-table">Table 1</a>. The sMMPI-2 scales include F, Fb, Fp, Ds(F-K), KHS, Hy, HEA, Hy4, D, Ma, RCd, RC2, and DEP. (<b>a</b>) Confusion matrix; (<b>b</b>) feature importance depending on f1-score.</p> "> Figure 5
<p>ROC analysis of the logistic regression classifier using sMMPI-2 scales. ROC, receiver operating characteristic; sMMPI-2, selected MMPI-2. The sMMPI-2 scales include F, Fb, Fp, Ds(F-K), KHS, Hy, HEA, Hy4, D, Ma, RCd, RC2, and DEP. Abbreviations for the MMPI-2 scales are defined in <a href="#medicina-60-01989-t001" class="html-table">Table 1</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization
2.4. Blinding
2.5. Interventions
2.6. Measures
2.6.1. NRS (0, No Pain; 10, the Worst Pain Imaginable)
2.6.2. MMPI-2 Scale (Table 1)
2.6.3. Waddell’s Sign
2.6.4. SF-MPQ
2.6.5. SAA
2.6.6. Sample Size
2.6.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrison, J. DSM-5® Made Easy: The Clinician’s Guide to Diagnosis; Guilford Publications: New York, NY, USA, 2014. [Google Scholar]
- Fishbain, D.A.; Cutler, R.; Rosomoff, H.L.; Rosomoff, R.S. Chronic pain disability exaggeration/malingering and submaximal effort research. Clin. J. Pain 1999, 15, 244–274. [Google Scholar] [CrossRef] [PubMed]
- Greve, K.W.; Ord, J.S.; Bianchini, K.J.; Curtis, K.L. Prevalence of malingering in patients with chronic pain referred for psychologic evaluation in a medico-legal context. Arch. Phys. Med. Rehabil. 2009, 90, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.C.; Weed, N.C.; Butcher, J.N. The MMPI-2: History, interpretation, and clinical issues. In Oxford Handbook of Personality Assessment; Butcher, J.N., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 250–276. [Google Scholar]
- Frueh, B.C.; Kinder, B.N. The susceptibility of the Rorschach Inkblot Test to malingering of combat-related PTSD. J. Pers. Assess. 1994, 62, 280–298. [Google Scholar] [CrossRef]
- Mason, L.H.; Shandera-Ochsner, A.L.; Williamson, K.D.; Harp, J.P.; Edmundson, M.; Berry, D.T.; High, W.M., Jr. Accuracy of MMPI-2-RF validity scales for identifying feigned PTSD symptoms, random responding, and genuine PTSD. J. Pers. Assess. 2013, 95, 585–593. [Google Scholar] [CrossRef]
- Sivec, H.J.; Hilsenroth, M.J.; Lynn, S.J. Impact of simulating borderline personality disorder on the MMPI-2: A costs-benefits model employing base rates. J. Pers. Assess. 1995, 64, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Fishbain, D.A.; Cole, B.; Cutler, R.B.; Lewis, J.; Rosomoff, H.L.; Rosomoff, R.S. A structured evidence-based review on the meaning of nonorganic physical signs: Waddell signs. Pain Med. 2003, 4, 141–181. [Google Scholar] [CrossRef]
- Larrabee, G.J. Exaggerated MMPI-2 symptom report in personal injury litigants with malingered neurocognitive deficit. Arch. Clin. Neuropsychol. 2003, 18, 673–686. [Google Scholar] [CrossRef]
- Bugdayci, G.; Yildiz, S.; Altunrende, B.; Yildiz, N.; Alkoy, S. Salivary alpha amylase activity in migraine patients. Auton. Neurosci. 2010, 155, 121–124. [Google Scholar] [CrossRef]
- Shirasaki, S.; Fujii, H.; Takahashi, M.; Sato, T.; Ebina, M.; Noto, Y.; Hirota, K. Correlation between salivary alpha-amylase activity and pain scale in patients with chronic pain. Reg. Anesth. Pain Med. 2007, 32, 120–123. [Google Scholar] [CrossRef]
- Ahmadi-Motamayel, F.; Shahriari, S.; Goodarzi, M.T.; Moghimbeigi, A.; Jazaeri, M.; Babaei, P. The relationship between the level of salivary alpha amylase activity and pain severity in patients with symptomatic irreversible pulpitis. Restor. Dent. Endod. 2013, 38, 141–145. [Google Scholar] [CrossRef]
- Arai, Y.C.; Matsubara, T.; Shimo, K.; Osuga, T.; Ushida, T.; Suzuki, C.; Ohta, A.; Tohyama, Y.; Nishida, K.; Arakawa, M. Small correlation between salivary alpha-amylase activity and pain intensity in patients with cancer pain. Acta Anaesthesiol. Scand. 2009, 53, 408. [Google Scholar] [CrossRef]
- Campos, M.J.; Raposo, N.R.; Ferreira, A.P.; Vitral, R.W. Salivary alpha-amylase activity: A possible indicator of pain-induced stress in orthodontic patients. Pain Med. 2011, 12, 1162–1166. [Google Scholar] [CrossRef]
- Silva Andrade, A.; Marcon Szymanski, M.; Hashizume, L.N.; Santos Mundstock, K.; Ferraz Goularte, J.; Hauber Gameiro, G. Evaluation of stress biomarkers and electrolytes in saliva of patients undergoing fixed orthodontic treatment. Minerva Stomatol. 2018, 67, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.R. MMPI-2: Assessing Personality and Psychopathology, 4th ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Iverson, G.L.; Binder, L.M. Detecting exaggeration and malingering in neuropsychological assessment. J. Head Trauma Rehabil. 2000, 15, 829–858. [Google Scholar] [CrossRef]
- Akodu, A.K.; Akindutire, O.M. The effect of stabilization exercise on pain-related disability, sleep disturbance, and psychological status of patients with non-specific chronic low back pain. Korean J. Pain 2018, 31, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.R.; Watts, D.; Timbrook, R.E. Detecting fake-good and fake-bad MMPI-2 profiles. J. Pers. Assess. 1991, 57, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Butcher, J.N.; Graham, J.R.; Ben-Porath, Y.S.; Tellegen, A.; Dahlstrom, W.; Kaemmer, B. MMPI-2: Manual for Administration, Scoring, and Interpretation, rev. ed.; University of Minnesota: Minneapolis, MN, USA, 2001. [Google Scholar]
- Myoung-Sin, S.; Kyung-Ream, H.; Chan, K.; Sun-Mi, C.; Ka-Hye, O. MMPI Results in Painful Patients. Korean J. Pain 2002, 15, 146–149. [Google Scholar]
- Fishbain, D.A.; Cutler, R.B.; Rosomoff, H.L.; Rosomoff, R.S. Is there a relationship between nonorganic physical findings (Waddell signs) and secondary gain/malingering? Clin. J. Pain 2004, 20, 399–408. [Google Scholar] [CrossRef]
- Ranney, D. A proposed neuroanatomical basis of Waddell’s nonorganic signs. Am. J. Phys. Med. Rehabil. 2010, 89, 1036–1042. [Google Scholar] [CrossRef]
- Melzack, R. The short-form McGill Pain Questionnaire. Pain 1987, 30, 191–197. [Google Scholar] [CrossRef]
- Takai, N.; Yamaguchi, M.; Aragaki, T.; Eto, K.; Uchihashi, K.; Nishikawa, Y. Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch. Oral. Biol. 2004, 49, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Granger, D.A.; Kivlighan, K.T.; el-Sheikh, M.; Gordis, E.B.; Stroud, L.R. Salivary alpha-amylase in biobehavioral research: Recent developments and applications. Ann. N. Y. Acad. Sci. 2007, 1098, 122–144. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, A.; Krummenacher, P.; La Marca, R.; Ehlert, U.; Folkers, G. Salivary Alpha-Amylase Correlates with Subjective Heat Pain Perception. Pain Med. 2016, 17, 1131–1136. [Google Scholar] [CrossRef]
- Liu, H.; Dong, W.Y.; Wang, J.B.; Wang, T.; Hu, P.; Wei, S.F.; Ye, L.; Wang, Q.W. Association between salivary α-amylase activity and pain relief scale scores in cancer patients with bone metastases treated with radiotherapy. Chin. Med. J. 2013, 126, 4444–4447. [Google Scholar] [CrossRef]
- Ferrara, P.; Bottaro, G.; Angeletti, S.; Gatto, A.; Vitelli, O.; Battaglia, D.; Del Re, M.; Ruggiero, A.; Dicuonzo, G. Salivary alpha-amylase: A new non-invasive biomarker for assessment of pain perception in epileptic children. Acta Neurol. Belg. 2013, 113, 279–283. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kammerer, M.; O’Reilly, R.; Taylor, A.; Glover, V. Salivary alpha-amylase stability, diurnal profile and lack of response to the cold hand test in young women. Stress 2009, 12, 549–554. [Google Scholar] [CrossRef]
- Dush, D.M.; Simons, L.E.; Platt, M.; Nation, P.C.; Ayres, S.Y. Psychological profiles distinguishing litigating and nonlitigating pain patients: Subtle, and not so subtle. J. Pers. Assess. 1994, 62, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, H.K.; Lee, K. Screening of Mood Symptoms Using MMPI-2-RF Scales: An Application of Machine Learning Techniques. J. Pers. Med. 2021, 11, 812. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.K.; Lee, K. Can the MMPI Predict Adult ADHD? An Approach Using Machine Learning Methods. Diagnostics 2021, 11, 976. [Google Scholar] [CrossRef]
- Pace, G.; Orrù, G.; Monaro, M.; Gnoato, F.; Vitaliani, R.; Boone, K.B.; Gemignani, A.; Sartori, G. Malingering Detection of Cognitive Impairment With the b Test Is Boosted Using Machine Learning. Front. Psychol. 2019, 10, 1650. [Google Scholar] [CrossRef]
- Larrabee, G.J. Somatic malingering on the MMPI and MMPI-2 in personal injury litigants. Clin. Neuropsychol. 1998, 12, 179–188. [Google Scholar] [CrossRef]
Abbreviation | Scale Composition | Description |
---|---|---|
VRIN | Validity indicators | Variable response inconsistency |
TRIN | Validity indicators | True response inconsistency |
F | Validity indicators | Infrequency |
Fb | Validity indicators | F back |
Fp | Validity indicators | F-psychopathology |
K | Validity indicators | Correction |
Ds(F-K) | Validity indicators | F minus K |
KHs | Clinical scales | Hypochondriasis |
Hy | Clinical scales | Hysteria |
HEA | Content scales | Health concerns |
Hy4 | Clinical subscales | Complaining of physical symptoms |
D | Clinical scales | Depression |
Ma | Clinical scales | Hypomania |
RCd | Restructured clinical scales | Demoralization |
RC2 | Restructured clinical scales | Low positive emotion |
DEP | Clinical scales | Depression |
Si | Clinical scales | Social introversion |
Ho | Supplemental scales | Hostility |
Pd4 | Clinical subscales | Social deviate |
D Group (n = 46) | ND Group (n = 50) | p-Value | |
---|---|---|---|
Age, yr | 44.3 ± 14.9 | 48.1 ± 13.8 | 0.205 |
Sex, M/F | 26/20 | 25/25 | 0.527 |
Low back pain, Y/N | 23/23 | 25/25 | 1.000 |
Duration of disease, months | 8.7 ± 16.5 | 7.1 ± 19.1 | 0.672 |
NRSreal | 2.5 ± 2.6 | 2.4 ± 2.5 | 0.851 |
NRSfake | 6.9 ± 2.1 | 2.4 ± 2.6 | <0.001 |
Exaggeration, Y/N | 5/41 | 0/50 | 0.016 |
Somatic inconvenience, Y/N | 8/38 | 4/46 | 0.168 |
Depression, Y/N | 15/31 | 10/40 | 0.163 |
Waddell’s sign, Y/N | 12/34 | 2/48 | 0.002 |
SF-MPQ | 36.9 ± 13.4 | 12.5 ± 11.7 | <0.001 |
SAA, U/mL | 123.3 ± 181.1 | 125.6 ± 98.5 | 0.940 |
Accuracy | Precision | Recall | f1-Score | Top three Features | |
---|---|---|---|---|---|
wMMPI-2 scales | 0.621 | 0.692 | 0.562 | 0.651 | Si, Ho, Pd4 |
sMMPI-2 scales | 0.724 | 0.692 | 0.692 | 0.692 | D, Hy, KHs |
wMMPI-2 without depression scales | 0.586 | 0.500 | 0.667 | 0.571 | Ho, Si, Rc4 |
sMMPI-2 without depression scales | 0.552 | 0.625 | 0.588 | 0.606 | Fb, Fp, Ds(F-K) |
Variables | Accuracy | Precision | Recall | f1-Score |
---|---|---|---|---|
Exaggeration scales of MMPI-2 | 0.573 | 1.000 | 0.109 | 0.196 |
Somatic inconvenience scales of MMPI-2 | 0.563 | 0.667 | 0.174 | 0.276 |
Waddell’s sign | 0.625 | 0.857 | 0.261 | 0.400 |
MMPI-2 Scales | OR | 95% CI | p-Value | |
---|---|---|---|---|
F | 1.06 | −0.10 | 0.22 | 0.477 |
Fb | 0.99 | −0.19 | 0.18 | 0.945 |
Fp | 1.05 | −0.09 | 0.18 | 0.492 |
Ds(F-K) | 1.08 | −0.01 | 0.17 | 0.072 |
KHs | 1.11 | −0.10 | 0.32 | 0.319 |
Hy | 1.13 | −0.10 | 0.26 | 0.076 |
HEA | 0.83 | −0.38 | 0.02 | 0.076 |
Hy4 | 1.01 | −0.13 | 0.16 | 0.854 |
D | 0.93 | −0.20 | 0.04 | 0.199 |
Ma | 0.93 | −0.16 | 0.02 | 0.131 |
RCd | 0.94 | −0.26 | 0.12 | 0.485 |
RC2 | 1.02 | −0.01 | 0.12 | 0.667 |
DEP | 1.03 | −0.16 | 0.22 | 0.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, H.; Nam, K.; Lee, S.; Woo, A.; Kim, J.; Park, E.; Moon, H. Diagnosis of Pain Deception Using Minnesota Multiphasic Personality Inventory-2 Based on XGBoost Machine Learning Algorithm: A Single-Blinded Randomized Controlled Trial. Medicina 2024, 60, 1989. https://doi.org/10.3390/medicina60121989
Chung H, Nam K, Lee S, Woo A, Kim J, Park E, Moon H. Diagnosis of Pain Deception Using Minnesota Multiphasic Personality Inventory-2 Based on XGBoost Machine Learning Algorithm: A Single-Blinded Randomized Controlled Trial. Medicina. 2024; 60(12):1989. https://doi.org/10.3390/medicina60121989
Chicago/Turabian StyleChung, Hyewon, Kihwan Nam, Subin Lee, Ami Woo, Joongbaek Kim, Eunhye Park, and Hosik Moon. 2024. "Diagnosis of Pain Deception Using Minnesota Multiphasic Personality Inventory-2 Based on XGBoost Machine Learning Algorithm: A Single-Blinded Randomized Controlled Trial" Medicina 60, no. 12: 1989. https://doi.org/10.3390/medicina60121989
APA StyleChung, H., Nam, K., Lee, S., Woo, A., Kim, J., Park, E., & Moon, H. (2024). Diagnosis of Pain Deception Using Minnesota Multiphasic Personality Inventory-2 Based on XGBoost Machine Learning Algorithm: A Single-Blinded Randomized Controlled Trial. Medicina, 60(12), 1989. https://doi.org/10.3390/medicina60121989