Biomechanical Behavior of Injected Cement Spacers versus Traditional Cages in Low-Density Lumbar Spine under Compression Loading
<p>(<b>A</b>) PEEK lumbar interbody cage. (<b>B</b>) Illustration of a specimen before operation in sagittal view: 1—vertebral bodies, 2—intervertebral space, 3—embedment plates, 4—base plate, 5—head plate of the testing machine, red lines—visualizing subcortical (solid lines) and central levels (dashed lines) for bone mineral density evaluation by CT scanning, arrow—indicating mechanical loading; (<b>C</b>) Photograph of a PMMA specimen post treatment in sagittal view. (<b>D</b>) Superior transverse, anterior coronal and midsagittal post-operative CT slices of a spacer with a PEEK cage. (<b>E</b>) Superior transverse, anterior coronal and midsagittal post-operative CT slices of a spacer with a PMMA spacer.</p> "> Figure 2
<p>Setup with a specimen mounted for biomechanical testing.</p> "> Figure 3
<p>Typical load-displacement curves of specimens treated with PMMA spacers (red) and PEEK cages (blue). Thin lines indicate linear parts for stiffness calculation using the same color code.</p> "> Figure 4
<p>Linear regression plots between failure load and average volumetric bone mineral density (<b>A</b>), average vertebral height (<b>B</b>), average vertebral area (<b>C</b>) and average contact area fraction (<b>D</b>) for the two groups, PEEK and PMMA.</p> "> Figure 5
<p>Endplate damage due to PEEK cages illustrating subsidence and fracture.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Biomechanical Testing and Data Evaluation
3. Results
3.1. Specimen Characteristics
3.2. Biomechanical Testing Results
3.3. Correlation between Specimen Characteristics and Biomechanical Test Results
3.4. Observations: Forms of Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jost, B.; Cripton, P.A.; Lund, T.; Oxland, T.R.; Lippuner, K.; Jaeger, P.; Nolte, L.-P. Compressive strength of interbody cages in the lumbar spine: The effect of cage shape, posterior instrumentation and bone density. Eur. Spine J. 1998, 7, 132–141. [Google Scholar] [CrossRef]
- Hasegawa, K.; Abe, M.; Washio, T.; Hara, T. An Experimental Study on the Interface Strength between Titanium Mesh Cage and Vertebra in Reference to Vertebral Bone Mineral Density. Spine 2001, 26, 957–963. [Google Scholar] [CrossRef]
- Labrom, R.D.; Tan, J.-S.; Reilly, C.W.; Tredwell, S.J.; Fisher, C.G.; Oxland, T.R. The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 2005, 30, E556–E561. [Google Scholar] [CrossRef]
- Tan, J.-S.; Bailey, C.S.; Dvorak, M.F.; Fisher, C.G.; Oxland, T.R. Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine 2005, 30, 638–644. [Google Scholar] [CrossRef]
- Yuan, W.; Kaliya-Perumal, A.-K.; Chou, S.M.; Oh, J.Y.-L. Does Lumbar Interbody Cage Size Influence Subsidence? A Biomechanical Study. Spine 2020, 45, 88–95. [Google Scholar] [CrossRef]
- Faizan, A.; Kiapour, A.; Kiapour, A.M.; Goel, V.K. Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J. Spinal Disord. Tech. 2014, 27, E118–E127. [Google Scholar] [CrossRef]
- Polikeit, A.; Ferguson, S.J.; Nolte, L.P.; Orr, T.E. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: Finite element analysis. Eur. Spine J. 2003, 12, 413–420. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, D.; Sun, H.; He, S.; Wang, B.; Hu, H.; Zhang, Y. Biomechanical effects of direction-changeable cage positions on lumbar spine: A finite element study. Am. J. Transl. Res. 2020, 12, 389–396. [Google Scholar]
- Castellvi, A.D.; Thampi, S.K.; Cook, D.J.; Yeager, M.S.; Yao, Y.; Zou, Q.; Whiting, D.M.; Oh, M.Y.; Prostko, E.R.; Cheng, B.C. Effect of TLIF Cage Placement on In Vivo Kinematics. Int. J. Spine Surg. 2015, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.W.; Lee, J.H.; Lee, J.-H.; Lee, D.-Y.; Shim, H.J. The Correlation between Cage Subsidence, Bone Mineral Density, and Clinical Results in Posterior Lumbar Interbody Fusion. Clin. Spine Surg. 2017, 30, E683–E689. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, H.; Hoshino, M.; Omori, K.; Matsuzaki, H.; Nemoto, Y.; Tsuruta, T.; Yamasaki, K. Factors Influencing Interbody Cage Subsidence Following Anterior Cervical Discectomy and Fusion. Clin. Spine Surg. 2019, 32, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Oxland, T.R.; Lund, T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: A literature review. Eur. Spine J. 2000, 9 (Suppl. S1), S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Roosen, K. Bone cement as replacement material of cervical disks. Fortschritte Med. 1982, 100, 2120–2126. (In German) [Google Scholar]
- Fathie, K. Anterior cervical diskectomy and fusion with methyl methacrylate. Mt. Sinai J. Med. 1994, 61, 246–247. [Google Scholar] [PubMed]
- Wilke, H.J.; Kettler, A.; Goetz, C.; Claes, L. Subsidence resulting from simulated postoperative neck movements: An in vitro investigation with a new cervical fusion cage. Spine 2000, 25, 2762–2770. [Google Scholar] [CrossRef] [PubMed]
- Klingler, J.-H.; Krüger, M.T.; Sircar, R.; Kogias, E.; Scholz, C.; Volz, F.; Scheiwe, C.; Hubbe, U. PEEK cages versus PMMA spacers in anterior cervical discectomy: Comparison of fusion, subsidence, sagittal alignment, and clinical outcome with a minimum 1-year follow-up. Sci. World J. 2014, 2014, 398396. [Google Scholar] [CrossRef]
- Topalovic, M.; Kroppenstedt, S.; Cabraja, M. The use of polymethylmethacrylate in cervical spine surgery. Hard Tissue 2013, 2, 24. [Google Scholar] [CrossRef]
- Wilke, H.-J.; Kettler, A.; Claes, L. Primary stabilizing effect of interbody fusion devices for the cervical spine: An in vitro comparison between three different cage types and bone cement. Eur. Spine J. 2000, 9, 410–416. [Google Scholar] [CrossRef]
- Varga, P.; Jakab, G.; Bors, I.; Lazary, A.; Szövérfi, Z. Experiences with PMMA cement as a stand-alone intervertebral spacer. Orthopade 2015, 44, 124–131. [Google Scholar] [CrossRef]
- Varga, P.P.; Jakab, G.; Szöverfi, Z.; Bors, I.; Lazary, A. Percutaneous cement discoplasty -minimal invasive treatment of severe disc degeneration in elderly. In Minimally Invasive Spinal Surgery, 1st ed.; Lewandrowski, K., Schubert, M., Léon, J., Fessler, R., Eds.; Medical Publisher: Tokyo, Japan, 2018. [Google Scholar]
- Tian, Q.; Lu, Y.-Y.; Sun, X.-Q.; Wang, T.; Wu, C.-G.; Li, M.-H.; Cheng-Ying, S. Feasibility of Percutaneous Lumbar Discectomy Combined with Percutaneous Cementoplasty for Symptomatic Lumbar Disc Herniation with Modic Type I Endplate Changes. Pain Physician 2017, 20, E481–E488. [Google Scholar]
- Tian, Q.-H.; Liu, Z.-J.; Liu, H.-F.; Fang, R.; Shen, R.-R.; Wang, T.; Cheng, Y.-S.; Wu, C.-G. Safety and Efficacy of Percutaneous Lumbar Discectomy and Percutaneous Disc Cementoplasty for Painful Lumbar Disc Herniation in Patients over 60 Years. J. Vasc. Interv. Radiol. 2019, 30, 894–899. [Google Scholar] [CrossRef]
- Sola, C.; Willhuber, G.C.; Kido, G.; Duarte, M.P.; Bendersky, M.; Mereles, M.; Petracchi, M.; Gruenberg, M. Percutaneous cement discoplasty for the treatment of advanced degenerative disk disease in elderly patients. Eur. Spine J. 2018, 30, 2200–2208. [Google Scholar] [CrossRef]
- Wang, B.; Shan, L.; Hao, D. Letter to the Editor concerning “Percutaneous cement discoplasty for the treatment of advanced degenerative disk disease in elderly patients” by Sola C, Camino Willhuber G, Kido G et al. Eur Spine J (2018): Doi 10.1007/s00586-018-5547-7. Eur. Spine J. 2018, 27, 1665–1666. [Google Scholar] [CrossRef]
- Camino Willhuber, G.; Sola, C. Answer to the Letter to the Editor of Biao Wang et al. concerning “Percutaneous cement discoplasty for the treatment of advanced degenerative disk disease in elderly patients” by Sola C, Camino Willhuber G, Kido G et al. Eur Spine J (2018): Doi:10.1007/s00586-018-5547-7. Eur. Spine J. 2018, 27, 1667–1668. [Google Scholar] [CrossRef]
- Lazary, A. Expert’s Comment concerning Grand Rounds Case entitled “Percutaneous cement discoplasty for the treatment of advanced degenerative disk disease in elderly patients”: (C. Sola; et al., Eur Spine J; 2018: DOI 10.1007/s00586-018-5547-7). Eur. Spine J. 2021, 30, 2209–2210. [Google Scholar] [CrossRef]
- Camino-Willhuber, G.; Bendersky, M.; Bianchi, H.; Gruenberg, M.; Sola, C. Reply to A. Lazary’s Expert’s Comment concerning grand rounds case entitled “Percutaneous cement discoplasty for the treatment of advanced degenerative disk disease in elderly patients” (C. Sola; et al., Eur Spine J; 2021;30(8):2209–2210. doi:10.1007/s00586-020-06568-4). Eur. Spine J. 2022, 31, 205–206. [Google Scholar] [CrossRef]
- Kiss, L.; Varga, P.P.; Szoverfi, Z.; Jakab, G.; Eltes, P.E.; Lazary, A. Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty. Eur. Spine J. 2019, 28, 1441–1447. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z. Letter to the Editor concerning “Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty” by Laszlo Kiss et al. (Eur Spine J; 28(6):1441–1447). Eur. Spine J. 2019, 28, 3092. [Google Scholar] [CrossRef]
- Kiss, L.; Varga, P.P.; Szoverfi, Z.; Jakab, G.; Eltes, P.E.; Lazary, A. Answer to the Letter to the Editor of Wang H; et al. concerning “Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty” by Laszlo Kiss et al. (Eur Spine J; 28(6):1441–1447). Eur. Spine J. 2019, 28, 3093. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Yang, X.; Song, Y. Letter to the Editor concerning “Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty” by Laszlo Kiss et al. (Eur Spine J; 28(6):1441–1447). Eur. Spine J. 2020, 29, 199. [Google Scholar] [CrossRef] [PubMed]
- Kiss, L.; Varga, P.P.; Szoverfi, Z.; Jakab, G.; Eltes, P.E.; Lazary, A. Answer to the Letter to the Editor of T. Xie et al. concerning “Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty” by Laszlo Kiss et al. (Eur Spine J; 28(6):1441–1447). Eur. Spine J. 2020, 29, 200. [Google Scholar] [CrossRef]
- Camino Willhuber, G.; Kido, G.; Pereira Duarte, M.; Estefan, M.; Bendersky, M.; Bassani, J.; Petracchi, M.; Gruenberg, M.; Sola, C. Percutaneous Cement Discoplasty for the Treatment of Advanced Degenerative Disc Conditions: A Case Series Analysis. Glob. Spine J. 2020, 10, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Camino-Willhuber, G.; Norotte, G.; Bronsard, N.; Kido, G.; Pereira-Duarte, M.; Estefan, M.; Bendersky, M.; Terrasa, S.; Bassani, J.; Petracchi, M.; et al. Percutaneous Cement Discoplasty for Degenerative Low Back Pain with Vacuum Phenomenon: A Multicentric Study with a Minimum of 2 Years of Follow-Up. World Neurosurg. 2021, 155, e210–e217. [Google Scholar] [CrossRef]
- Eltes, P.E.; Kiss, L.; Bereczki, F.; Szoverfi, Z.; Techens, C.; Jakab, G.; Hajnal, B.; Varga, P.P.; Lazary, A. A novel three-dimensional volumetric method to measure indirect decompression after percutaneous cement discoplasty. J. Orthop. Transl. 2021, 28, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Techens, C.; Palanca, M.; Éltes, P.E.; Lazáry, Á.; Cristofolini, L. Testing the impact of discoplasty on the biomechanics of the intervertebral disc with simulated degeneration: An in vitro study. Med. Eng. Phys. 2020, 84, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ghandour, S.; Pazarlis, K.; Lewin, S.; Isaksson, P.; Försth, P.; Persson, C. An ex-vivo model for the biomechanical assessment of cement discoplasty. Front. Bioeng. Biotechnol. 2022, 10, 939717. [Google Scholar] [CrossRef]
- Lewin, S.; Försth, P.; Persson, C. Low-Modulus PMMA Has the Potential to Reduce Stresses on Endplates after Cement Discoplasty. J. Funct. Biomater. 2022, 13, 18. [Google Scholar] [CrossRef]
- Jia, H.; Xu, B.; Qi, X. Biomechanical evaluation of percutaneous cement discoplasty by finite element analysis. BMC Musculoskelet. Disord. 2022, 23, 594. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, W.; Li, M.; Cheng, Z.; Huang, J.; Liang, C.; Li, Y.; Huang, L. Biomechanical effects of cement discoplasty on the lumbar spinal unit. Front. Surg. 2022, 9, 951141. [Google Scholar] [CrossRef] [PubMed]
- Techens, C.; Montanari, S.; Bereczki, F.; Eltes, P.E.; Lazary, A.; Cristofolini, L. Biomechanical consequences of cement discoplasty: An in vitro study on thoraco-lumbar human spines. Front. Bioeng. Biotechnol. 2022, 10, 1040695. [Google Scholar] [CrossRef]
- Fusini, F.; Girardo, M.; Aprato, A.; Massè, A.; Lorenzi, A.; Messina, D.; Colò, G. Percutaneous Cement Discoplasty in Degenerative Spinal Disease: Systematic Review of Indications, Clinical Outcomes, and Complications. World Neurosurg. 2022, 168, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.S.; Hirsch, J.A.; Cancelliere, N.M.; Ghozy, S.; Pereira, V.M.; Dmytriw, A.A. Efficacy and safety of percutaneous cement discoplasty in the management of degenerative spinal diseases: A systematic review and meta-analysis. Neuroradiol. J. 2023, 3, 19714009231212368. [Google Scholar] [CrossRef] [PubMed]
- Techens, C.; Eltes, P.E.; Lazary, A.; Cristofolini, L. Critical Review of the State-of-the-Art on Lumbar Percutaneous Cement Discoplasty. Front. Surg. 2022, 9, 902831. [Google Scholar] [CrossRef] [PubMed]
- Csakany, T.; Kurutz, M.; Varga, P. Biomechanical evaluation of interbody devices by using mechanical compressive test: PEEK spacers versus PMMA cement spacers. Biomech. Hung. 2013, 6, 259–271. [Google Scholar] [CrossRef]
- American College of Radiology. ACR–SPR–SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (QCT). 2018. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf (accessed on 17 April 2021).
- Kurutz, M.; Varga, P.; Jakab, G. Prophylactic vertebroplasty versus kyphoplasty in osteoporosis: A comprehensive biomechanical matched-pair study by in vitro compressive testing. Med. Eng. Phys. 2019, 65, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Palepu, V.; Helgeson, M.D.; Molyneaux-Francis, M.; Nagaraja, S. The Effects of Bone Microstructure on Subsidence Risk for ALIF, LLIF, PLIF, and TLIF Spine Cages. J. Biomech. Eng. 2019, 141, 031002. [Google Scholar] [CrossRef]
- Varga, P.; Nédli, P.T.C.; Kurutz, M.; Varga, P.P. Biomechanical evaluation of two different vertebral interbody devices by using QCT-based case-specific nonlinear finite element models: A preliminary report. Biomech. Hung. 2013, 6, 175–184. [Google Scholar] [CrossRef]
Characteristics | Group (n = 10) | p-Value | |
---|---|---|---|
PEEK | PMMA | ||
Age | 70.2 ± 10.6 | 70.4 ± 13.9 | ns |
Vertebral BMD (mg/cm3) | |||
mean subcortical | 87.4 ± 27.6 | 98.9 ± 20.3 | ns |
mean central | 67.0 ± 18.0 | 81.8 ± 16.5 | ns |
mean cranial | 78.9 ± 23.3 | 93.8 ± 17.6 | ns |
mean caudal | 75.6 ± 21.5 | 86.8 ± 17.1 | ns |
mean total | 77.2 ± 22.3 | 90.3 ± 17.2 | ns |
Vertebral area (mm2) | |||
mean subcortical | 1312 ± 259 | 1143 ± 150 | ns |
mean central | 1032 ± 189 | 909 ± 138 | ns |
mean cranial | 1145 ± 234 | 989 ± 138 | ns |
mean caudal | 1199 ± 211 | 1063 ± 145 | ns |
mean total | 1172 ± 221 | 1026 ± 140 | ns |
Vertebral height (mm) | |||
mean anterior | 27.0 ± 1.4 | 26.7 ± 2.6 | ns |
mean posterior | 27.1 ± 1.6 | 26.0 ± 1.6 | ns |
mean cranial | 26.8 ± 1.4 | 26.1 ± 2.2 | ns |
mean caudal | 27.3 ± 1.6 | 26.6 ± 1.6 | ns |
mean total | 27.1 ± 1.3 | 26.4 ± 1.9 | ns |
Vertebral volume (mm3) | |||
cranial | 30,989 ± 7770 | 25,336 ± 4444 | ns |
caudal | 32,881 ± 7202 | 27,864 ± 5225 | ns |
mean | 31,935 ± 7387 | 26,600 ± 4780 | ns |
Spacer contact area x (mm2) | 320 ± 0 | 567 ± 93 | **** |
Contact area fraction x (CAF, %) | |||
cranial | 25.9 ± 5.4 | 52.2 ± 9.0 | **** |
caudal | 24.6 ± 4.5 | 48.1 ± 7.8 | **** |
mean | 25.2 ± 4.9 | 50.0 ± 8.2 | **** |
Spacer contact height x (mm) | 10.3 ± 1.5 | 8.9 ± 2.8 | ns |
Contact height fraction x (CHF, %) | |||
mean anterior | 38.1 ± 5.3 | 33.6 ± 11.6 | ns |
mean posterior | 38.3 ± 6.5 | 34.2 ± 11.2 | ns |
mean cranial | 38.4 ± 5.2 | 34.1 ± 11.0 | ns |
mean caudal | 38.0 ± 6.5 | 33.6 ± 11.8 | ns |
mean total | 38.2 ± 5.9 | 33.9 ± 11.3 | ns |
Spacer contact volume x (mm3) | 3296 ± 478 | 4941 ± 1331 | ** |
Contact volume fraction x (CVF, %) | |||
cranial | 11.1 ± 2.5 | 20.1 ± 6.9 | ** |
caudal | 10.4 ± 2.4 | 18.3 ± 6.4 | ** |
mean | 10.7 ± 2.4 | 19.2 ± 6.6 | ** |
Outcome | Group (n = 10) | p-Value | |
---|---|---|---|
PEEK | PMMA | ||
Stiffness (N/mm) | 525 ± 181 | 1192 ± 376 | **** |
Failure load (N) | 1915 ± 836 | 1847 ± 267 | ns |
Failure displacement (mm) | 5.64 ± 1.05 | 3.16 ± 0.81 | **** |
Yield strength (N) | 1636 ± 770 | 1483 ± 320 | ns |
Yield displacement (mm) | 4.74 ± 0.98 | 2.38 ± 0.44 | **** |
Plastic displacement before failure (mm) | 0.90 ± 0.56 | 0.79 ± 0.59 | ns |
Failure contact stress x (N/mm2) | 5.98 ± 2.61 | 3.32 ± 0.64 | ** |
Correlation | Stiffness | Failure Load | Failure Displacement | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEEK | PMMA | PEEK | PMMA | PEEK | PMMA | |||||||
R | P | R | P | R | P | R | P | R | P | R | P | |
Age | −0.791 | * | ns | −0.922 | *** | ns | ns | ns | ||||
BMD | ||||||||||||
mean subcortical | 0.672 | * | ns | 0.803 | * | ns | ns | ns | ||||
mean central | 0.732 | * | ns | 0.763 | * | ns | ns | ns | ||||
mean cranial | 0.705 | * | ns | 0.821 | * | ns | ns | ns | ||||
mean caudal | 0.712 | * | ns | 0.784 | * | ns | ns | ns | ||||
mean total | 0.712 | * | ns | 0.806 | * | ns | ns | ns | ||||
Vertebral area | ||||||||||||
mean subcortical | ns | ns | 0.849 | ** | −0.707 | * | ns | ns | ||||
mean central | ns | ns | 0.774 | * | −0.663 | * | ns | ns | ||||
mean cranial | ns | ns | 0.842 | ** | −0.740 | * | 0.625 | * | ns | |||
mean | ns | ns | 0.803 | ** | −0.661 | * | ns | ns | ||||
mean total | ns | ns | 0.828 | ** | −0.704 | * | ns | ns | ||||
Vertebral height | ||||||||||||
mean anterior | ns | ns | 0.844 | ** | ns | 0.712 | * | ns | ||||
mean posterior | 0.877 | ** | ns | 0.833 | ** | ns | ns | ns | ||||
mean cranial | 0.677 | * | ns | 0.871 | ** | ns | ns | ns | ||||
mean caudal | 0.752 | * | ns | 0.819 | * | ns | ns | ns | ||||
mean total | 0.807 | * | ns | 0.948 | **** | ns | ns | ns | ||||
Vertebral volume | ||||||||||||
cranial | ns | ns | 0.792 | * | ns | 0.623 | * | ns | ||||
caudal | ns | ns | 0.879 | ** | ns | ns | ns | |||||
mean | ns | ns | 0.882 | ** | ns | ns | ns | |||||
Spacer contact area x | ns | ns | ns | |||||||||
Contact area fraction x | ||||||||||||
cranial | ns | ns | −0.844 | ** | 0.821 | * | −0.619 | * | ns | |||
caudal | ns | 0.682 | * | −0.762 | * | 0.717 | * | ns | −0.682 | * | ||
mean | ns | 0.660 | * | −0.810 | * | 0.778 | * | ns | −0.645 | * | ||
Spacer contact height x | ns | −0.625 | * | ns | ns | ns | 0.720 | * | ||||
Contact height fraction x | ||||||||||||
anterior | ns | −0.620 | * | ns | ns | ns | 0.655 | * | ||||
posterior | ns | −0.638 | * | ns | ns | ns | 0.712 | * | ||||
cranial | ns | −0.631 | * | ns | ns | ns | 0.659 | * | ||||
caudal | ns | −0.629 | * | ns | ns | ns | 0.708 | * | ||||
mean | ns | −0.631 | * | ns | ns | ns | 0.687 | * | ||||
segment | ns | −0.638 | * | ns | ns | ns | 0.689 | * | ||||
Spacer contact volume x | ns | ns | ns | ns | ns | ns | ||||||
Contact volume fraction x | ||||||||||||
cranial | ns | −0.827 | ** | ns | ns | |||||||
caudal | ns | ns | −0.716 | * | ns | ns | ns | |||||
mean | ns | ns | −0.780 | * | ns | ns | ns | |||||
segment | ns | ns | −0.780 | * | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csakany, T.; Varga, P.; Gueorguiev, B.; Lakatos, E.; Kurutz, M. Biomechanical Behavior of Injected Cement Spacers versus Traditional Cages in Low-Density Lumbar Spine under Compression Loading. Medicina 2024, 60, 1155. https://doi.org/10.3390/medicina60071155
Csakany T, Varga P, Gueorguiev B, Lakatos E, Kurutz M. Biomechanical Behavior of Injected Cement Spacers versus Traditional Cages in Low-Density Lumbar Spine under Compression Loading. Medicina. 2024; 60(7):1155. https://doi.org/10.3390/medicina60071155
Chicago/Turabian StyleCsakany, Tibor, Peter Varga, Boyko Gueorguiev, Eva Lakatos, and Marta Kurutz. 2024. "Biomechanical Behavior of Injected Cement Spacers versus Traditional Cages in Low-Density Lumbar Spine under Compression Loading" Medicina 60, no. 7: 1155. https://doi.org/10.3390/medicina60071155
APA StyleCsakany, T., Varga, P., Gueorguiev, B., Lakatos, E., & Kurutz, M. (2024). Biomechanical Behavior of Injected Cement Spacers versus Traditional Cages in Low-Density Lumbar Spine under Compression Loading. Medicina, 60(7), 1155. https://doi.org/10.3390/medicina60071155