Polarography Can Successfully Quantify Heavy Metals in Dentistry
<p>Determination of zinc, cadmium, lead, and copper in sample No. J1-5 and its polarographic curves according to DIN38406/16. Spiked concentrations were 0.1 mL of 10, 0.5, 0.1, and 2.5 mg/L of zinc, lead, cadmium, and copper, respectively.</p> "> Figure 2
<p>The distribution of zinc, Cd, Pb, and Cu concentrations in each numbered sample after three replications.</p> "> Figure 3
<p>Boxplot of Zn, Cd, Pb, and Cu concentrations in the samples. The minimum (0th percentile), maximum (100th percentile), median (50th percentile), first quartile (25th percentile), and third quartile (75th percentile), clearly show the data scatter in the first, second, third, and fourth quartiles. The most dispersion was shown in the fourth quartiles.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Device Specifications
2.3. Quality Controls of the Method
Standard Reference Materials
2.4. Sample Analysis
3. Results
3.1. LOD, LOQ, Accuracy, and Precision
3.2. Results of Samples Masurment
4. Discussion
4.1. Gender
4.2. Age
4.3. Tooth Type
4.4. Jaw
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korkmaz Gorur, F.; Keser, R.; Akcay, N.; Dizman, S. Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 2012, 87, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.; Dampare, S.B.; Islam, M.A.; Suzuki, S. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environ. Monit. Assess. 2015, 187, 4075. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, B.; Moore, F.; Ansari, M.; Rastegari Mehr, M.; Kaabi, H.; Kermani, M. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran. Environ. Monit. Assess. 2015, 187, 4113. [Google Scholar] [CrossRef] [PubMed]
- Alomary, A.; Al-Momani, I.F.; Massadeh, A.M. Lead and cadmium in human teeth from Jordan by atomic absorption spectrometry: Some factors influencing their concentrations. Sci. Total Environ. 2006, 369, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bearer, C.F. How are children different from adults? Environ. Health Perspect. 1995, 103 (Suppl. S6), 7–12. [Google Scholar] [CrossRef] [PubMed]
- Kollmeier, H.; Seemann, J.; Wittig, P.; Thiele, H.; Schach, S. Age-dependent accumulation of lead in teeth. Klinische Wochenschr. 1984, 62, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Kamberi, B.; Kqiku, L.; Hoxha, V.; Dragusha, E. Lead concentrations in teeth from people living in Kosovo and Austria. Coll. Antropol. 2011, 35, 79–82. [Google Scholar] [PubMed]
- Tvinnereim, H.M.; Eide, R.; Riise, T. Heavy metals in human primary teeth: Some factors influencing the metal concentrations. Sci. Total Environ. 2000, 255, 21–27. [Google Scholar] [CrossRef]
- Rahman, A.; Yousuf, F.A. Lead levels in primary teeth of children in Karachi. Ann. Trop. Paediatr. 2002, 22, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Nowak, B.; Chmielnicka, J. Relationship of lead and cadmium to essential elements in hair, teeth, and nails of environmentally exposed people. Ecotoxicol. Environ. Saf. 2000, 46, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Bercovitz, K.; Laufer, D. Age and gender influence on lead accumulation in root dentine of human permanent teeth. Arch. Oral Biol. 1991, 36, 671–673. [Google Scholar] [CrossRef]
- Pyatt, F.B.; Amos, D.; Grattan, J.P.; Pyatt, A.J.; Terrell-Nield, C.E. Invertebrates of ancient heavy metal spoil and smelting tip sites in southern Jordan: Their distribution and use as bioindicators of metalliferous pollution derived from ancient sources. J. Arid Environ. 2002, 52, 53–62. [Google Scholar] [CrossRef]
- Pais, I.; Benton, J. The Handbook of Trace Elements; St. Lucie Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Graziano, J.H. Validity of lead exposure markers in diagnosis and surveillance. Clin. Chem. 1994, 40, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Kwapulinski, J.; Wiechula, D.; Fischer, T.; Loska, M. The occurrence of copper in deciduous teeth of girls and boys living in Upper Silesian Industry Region (Southern Poland). Sci. Total Environ. 2008, 389, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Shibamoto, T.; Bjeldanes, L.F. Heavy Metals. Introduction to Food Toxicology; Elsevier: San Diego, CA, USA, 2009; pp. 192–206. [Google Scholar]
- Tvinnereim, H.M.; Eide, R.; Riise, T.; Fosse, G.; Wesenberg, G.R. Zinc in primary teeth from children in Norway. Sci. Total Environ. 1999, 226, 201–212. [Google Scholar] [CrossRef]
- Said, A.B.; Telmoudi, C.; Louati, K.; Telmoudi, F.; Amira, D.; Hsairi, M.; Hedhili, A. Evaluation of the Reliability of Human Teeth Matrix Used as a Biomarker for Fluoride Environmental Pollution. Ann. Pharm. Françaises 2020, 78, 21–33. [Google Scholar]
- Franck, U.; Herbarth, O.; Langer, O.; Stärk, H.-J.; Treide, A. Lead levels in deciduous teeth in relation to tooth type and tissue as well as to maternal behavior and selected individual environmental parameters of children. Environ. Toxicol. 1999, 14, 439–454. [Google Scholar] [CrossRef]
- Zanjani, S.Y.; Eskandari, M.R.; Kamali, K.; Mohseni, M. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains. Environ. Sci. Pollut. Res. Int. 2017, 24, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Mirza Alizadeh, A.; Mohseni, M.; Zamani, A.A.; Kamali, K. Polarographic Determination of Sodium Hydrosulfite Residue (Dithionite) in Sugar and Loaf Sugar. Food Anal. Methods 2015, 8, 483–488. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Steenhout, A. Kinetics of lead storage in teeth and bones: An epidemiologic approach. Arch. Environ. Health 1982, 37, 224–231. [Google Scholar] [CrossRef]
- Alomary, A.; Al-Momani, I.F.; Obeidat, S.M.; Massadeh, A.M. Levels of lead, cadmium, copper, iron, and zinc in deciduous teeth of children living in Irbid, Jordan by ICP-OES: Some factors affecting their concentrations. Environ. Monit. Assess. 2013, 185, 3283–3295. [Google Scholar] [CrossRef]
- Miller, J.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson Education: England, UK, 2018. [Google Scholar]
- Petersen, P.E. The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century—The approach of the WHO Global Oral Health Programme. Commun. Dent. Oral Epidemiol. 2003, 31 (Suppl. S1), 3–23. [Google Scholar] [CrossRef] [PubMed]
- Pashmi, K.; PourKkhabbaz, A. Eevaluation of the concentration of copper and zinc elements in childeren deciduous teeth of birjand city (Iran) in 2010. J. Mashhad Dent. Sch. 2013, 36, 271–278. [Google Scholar]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, K.; Khandaker, M.U.; Binti Baharudin, N.A.; Amin, Y.B.M.; Farook, M.S.; Bradley, D.A.; Mahmoud, O. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution. Chemosphere 2017, 176, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Báez, A.; Belmont, R.; García, R.; Hernández, J.C. Niveles de cadmio y plomo en dientes deciduos de niños residentes en la Ciudad de México. Rev. Int. Contam. Ambient. 2004, 20, 109–115. [Google Scholar]
- Cleymaet, R.; Bottenberg, P.; Slop, D.; Clara, R.; Coomans, D. Study of lead and cadmium content of surface enamel of schoolchildren from an industrial area in Belgium. Commun. Dent. Oral Epidemiol. 1991, 19, 107–111. [Google Scholar] [CrossRef]
- Gerlach, R.F.; Toledo, D.B.; Novaes, P.D.; Merzel, J.; Line, S.R. The effect of lead on the eruption rates of incisor teeth in rats. Arch. Oral Biol. 2000, 45, 951–955. [Google Scholar] [CrossRef]
- Gochfeld, M. Factors Influencing Susceptibility to Metals. Environ. Health Perspect. 1997, 105, 817–822. [Google Scholar] [PubMed]
- Bayo, J.; Moreno-Grau, S.; Martinez, M.J.; Moreno, J.; Angosto, J.M.; Guillen Perez, J.; Garcia Marcos, L.; Moreno-Clavel, J. Environmental and physiological factors affecting lead and cadmium levels in deciduous teeth. Arch. Environ. Contam. Toxicol. 2001, 41, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.; Mathiason, L. The determination of copper, zinc, and lead in human teeth using inductively coupled plasma atomic emission spectrometry (ICP-AES). Concordia Coll. J. Anal. Chem. 2012, 31, 33–39. [Google Scholar]
- Fischer, A.; Wiechuła, D.; Postek-Stefańska, L.; Kwapuliński, J. Concentrations of Metals in Maxilla and Mandible Deciduous and Permanent Human Teeth. Biol. Trace Elem. Res. 2009, 132, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Attramadal, A.; Jonsen, J. The content of lead, cadmium, zinc and copper in deciduous and permanent human teeth. Acta Odontol. Scand 1976, 34, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, A.; Al-Saleh, F.; Al-Mahroos, F. Levels of cadmium, copper and iron in deciduous teeth of children living in Bahrain. Int. J. Environ. Health Res. 1999, 9, 261–268. [Google Scholar] [CrossRef]
Step (N) | Temperature (Celsius) | Time (min) | Power of Single Vessels (W) |
---|---|---|---|
1 | 130 | 10 | 400 |
2 | 150 | 5 | 400 |
3 | 180 | 5 | 400 |
4 | 210 | 15 | 400 |
Zn (µg/L) | Cu (µg/L) | Pb (µg/L) | Cd (µg/L) | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Actual value | 200 | 200 | 200 | 200 |
Measured value | 196.44 (±4.87) | 200.50 (±0.619) | 202.88 (±8.11) | 211.01 (±9.44) |
RSD% | 2.46 | 3.08 | 3.99 | 4.47 |
Actual value | 100 | 100 | 100 | 100 |
Measured value | 99.12 (±1.22) | 104.11 (±3.24) | 102.07 (±1.99) | 98.22 (±1.54) |
RSD% | 1.23 | 3.11 | 1.94 | 1.56 |
Actual value | 50 | 50 | 50 | 50 |
Measured value | 47.2 (±0.99) | 49.9 (±1.91) | 53.15 (±2.18) | 50.13 (±0.65) |
RSD% | 2.09 | 3.82 | 4.10 | 1.29 |
Actual value | 25 | 25 | 25 | 25 |
Measured value | 28.33 (±0.05) | 27.11(±1.10) | 27.16 (±1.23) | 24.18 (±0.48) |
RSD% | 1.76 | 4.05 | 4.52 | 1.98 |
Zn | Cd | Pb | Cu | |
---|---|---|---|---|
Mean | 245 | 0.0879 | 7.66 | 5.33 |
N | 42 | 42 | 42 | 42 |
Std. Deviation | 191 | 0.0741 | 6.58 | 4.35 |
Coefficient of Variation% | 77.9 | 84.3 | 85.9 | 81.6 |
Maximum | 900 | 0.27 | 22.80 | 17.2 |
Minimum | 40 | ND * | 0.60 | 0.30 |
Valuse < LOD of total sample | 34 (96) | 34 (96) | 34 (96) | 34 (96) |
Variables | Zn (μg/g) | Cd (μg/g) | Pb (μg/g) | Cu (μg/g) | ||
---|---|---|---|---|---|---|
gender | Female | Mean | 293.16 | 0.08 | 8.20 | 5.91 |
Std. Deviation | 225.33 | 0.07 | 6.43 | 4.76 | ||
Male | Mean | 181.37 | 0.09 | 6.91 | 4.56 | |
Std. Deviation | 109.33 | 0.08 | 6.91 | 3.75 | ||
Sig. (2-tailed) | 0.041 | 0.722 | 0.552 | 0.326 | ||
Age range | 1 till 5 | Mean | 224.48 | 0.08 | 6.33 | 4.90 |
Std. Deviation | 181.37 | 0.07 | 5.31 | 4.38 | ||
5 till 10 | Mean | 264.13 | 0.09 | 8.88 | 5.73 | |
Std. Deviation | 202.13 | 0.08 | 7.47 | 4.40 | ||
Sig. (2-tailed) | 0.509 | 0.566 | 0.214 | 0.539 | ||
Type of teeth | Incisor | Mean | 311.32 | 0.09 | 8.98 | 5.02 |
Std. Deviation | 231.20 | 0.07 | 7.52 | 3.61 | ||
Molar | Mean | 221.80 | 0.08 | 7.20 | 5.44 | |
Std. Deviation | 173.20 | 0.07 | 6.28 | 4.64 | ||
Sig. (2-tailed) | 0.186 | 0.733 | 0.449 | 0.787 | ||
Type of jaw | Upper | Mean | 200.60 | 0.06 | 6.79 | 3.88 |
Std. Deviation | 107.09 | 0.06 | 6.74 | 2.94 | ||
Lower | Mean | 263.16 | 0.10 | 8.02 | 5.91 | |
Std. Deviation | 214.93 | 0.07 | 6.70 | 4.73 | ||
Sig. (2-tailed) | 0.344 | 0.208 | 0.590 | 0.176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazemisalman, B.; Bayat, N.; Darvish, S.; Nahavandi, S.; Mohseni, M.; Luchian, I. Polarography Can Successfully Quantify Heavy Metals in Dentistry. Medicina 2022, 58, 448. https://doi.org/10.3390/medicina58030448
Nazemisalman B, Bayat N, Darvish S, Nahavandi S, Mohseni M, Luchian I. Polarography Can Successfully Quantify Heavy Metals in Dentistry. Medicina. 2022; 58(3):448. https://doi.org/10.3390/medicina58030448
Chicago/Turabian StyleNazemisalman, Bahareh, Narges Bayat, Shayan Darvish, Saeedeh Nahavandi, Mehran Mohseni, and Ionut Luchian. 2022. "Polarography Can Successfully Quantify Heavy Metals in Dentistry" Medicina 58, no. 3: 448. https://doi.org/10.3390/medicina58030448
APA StyleNazemisalman, B., Bayat, N., Darvish, S., Nahavandi, S., Mohseni, M., & Luchian, I. (2022). Polarography Can Successfully Quantify Heavy Metals in Dentistry. Medicina, 58(3), 448. https://doi.org/10.3390/medicina58030448