Exploring the Pharmacokinetics and Gut Microbiota Modulation of Hesperidin and Nobiletin from Mandarin Orange Peel in Experimental Dogs: A Pilot Study
"> Figure 1
<p><b>α-Diversity analysis.</b> Changes in the chao1 index before (vehicle_pre) and two weeks after (vehicle_2w) administration of cubes without mandarin orange peel (<b>left</b>), and changes before (orange_pre) and two weeks after (orange_2w) administration of cubes containing mandarin orange peel (<b>right</b>).</p> "> Figure 2
<p><b>LEfSe Analysis.</b> Cladogram of individuals as subclass variables before and after administration of cubes without mandarin orange peel (vehicle_pre, 2w) (<b>A</b>), before and after administration of cubes containing mandarin orange peel (orange_pre, 2w) (<b>B</b>), and LDA histogram (<b>C</b>). The pairwise Wilcoxon test indicates which bacterial species showed significant increases before and after administration, marked in green or red. Additionally, pairwise plots show the relative abundance of <span class="html-italic">Eggerthellaceae</span> and <span class="html-italic">Fusobacteriaceae,</span> which significantly changed before and after administration of cubes containing mandarin orange peel (<b>D</b>). LEfSe, Linear Discriminant Analysis Effect Size.</p> "> Figure 3
<p><b>Demonstration test on senior dogs</b>. Three senior dogs exhibiting symptoms of Alzheimer’s disease (such as loss of appetite, fear, nighttime crying, and decreased activity) were administered gelatin cubes containing mandarin orange peel (MOP). All three dogs showed improvement in their symptoms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Component Analysis of Mandarin Orange Peel Powder
2.1.1. Preparation of Mandarin Orange Peel Powder
2.1.2. Flavonoid Analysis
2.2. Administration Tests on Experimental Dogs
2.2.1. Test Animals
2.2.2. Cube Preparation Method
2.2.3. Administration and Sampling
2.3. Plasma Metabolite Analysis
2.4. Intestinal Microbiota Analysis
2.4.1. DNA Extraction from Feces
2.4.2. Microbiota Analysis
2.5. General Condition and Blood Biochemical Tests of Experimental Dogs
2.6. Demonstration Test by Volunteers
3. Results
3.1. Component Analysis of Mandarin Orange Peel Powder
3.2. Administration Tests on Experimental Dogs
3.2.1. Plasma Metabolite Analysis
3.2.2. Intestinal Microbiota Analysis
3.3. General Condition and Blood Biochemical Tests of Experimental Dogs
3.4. Demonstration Test on Senior Companion Dogs (3 Cases)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Vargas, F.; Romecín, P.; García-Guillén, A.I.; Wangesteen, R.; Vargas-Tendero, P.; Paredes, M.D.; Atucha, N.M.; García-Estañ, J. Flavonoids in Kidney Health and Disease. Front Physiol. 2018, 9, 394. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Garg, S.; Zaneveld, L.J.; Singla, A.K. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother. Res. 2001, 15, 655–669. [Google Scholar] [CrossRef]
- Krystyna, P. Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022, 14, 2387. [Google Scholar] [CrossRef]
- Bentsáth, A.; Rusznyák, S.; Szent-Györgyi, A. Vitamin nature of Flavones. Nature 1936, 138, 798. [Google Scholar] [CrossRef]
- Chukwuma, C.I. Antioxidative, metabolic and vascular medicinal potentials of natural products in the non-edible wastes of fruits belonging to the citrus and Prunus Genera: A review. Plants 2024, 13, 191. [Google Scholar] [CrossRef]
- Escobedo-Avellaneda, Z.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; Antonio Torres, J.; Welti-Chanes, J. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods 2014, 6, 470–481. [Google Scholar] [CrossRef]
- Kubo, M.; Fujita, T.; Nishimura, S.; Tokunaga, M.; Matsuda, H.; Gato, T.; Tomohiro, N.; Sasaki, K.; Utsunomiya, N. Seasonal variation in anti-allergic activity of citrus fruits and flavanone glycoside content. Nat. Med. 2004, 58, 284–294. [Google Scholar]
- Mandour, D.A.; Bendary, M.A.; Alsemeh, A.E. Histological and imunohistochemical alterations of hippocampus and prefrontal cortex in a rat model of Alzheimer like-disease with a preferential role of the flavonoid “hesperidin”. J. Mol. Histol. 2021, 52, 1043–1065. [Google Scholar] [CrossRef] [PubMed]
- Wirianto, M.; Wang, C.Y.; Kim, E.; Koike, N.; Gomez-Gutierrez, R.; Nohara, K.; Escobedo, G., Jr.; Choi, J.M.; Han, C.; Yagita, K.; et al. The clock modulator nobiletin mitigates astrogliosis-associated neuroinflammation and disease hallmarks in an Alzheimer’s disease model. FASEB J. 2022, 36, e22186. [Google Scholar] [CrossRef]
- Nagasawa, M.; Mitsui, S.; En, S.; Ohtani, N.; Ohta, M.; Sakuma, Y.; Onaka, T.; Mogi, K.; Kikusui, T. Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 2015, 348, 333–336. [Google Scholar] [CrossRef]
- Martin, F.; Bachert, K.E.; Snow, L.; Tu, H.W.; Belahbib, J.; Lyn, S.A. Depression, anxiety, and happiness in dog owners and potential dog owners during the COVID-19 pandemic in the United States. PLoS ONE 2021, 16, e0260676. [Google Scholar] [CrossRef]
- Burns, K. Devocalization as a final alternative: Delegates pass resolutions on devocalization, VCPR, livetock handling. J. Am. Vet. Med. Assoc. 2013, 242, 577–579. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. Summary of Results for Citrus Production. 2024. Available online: https://www.maff.go.jp/j/tokei/kekka_gaiyou/sakumotu/sakkyou_kajyu/mikan/r5/ (accessed on 14 December 2024).
- e-Stat. Crop Statistics Survey. 2024. Available online: https://www.e-stat.go.jp/dbview?sid=0003313868 (accessed on 14 December 2024).
- Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan—2020 (Eighth Revised Edition). 2020. Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/mext_01110.html (accessed on 14 December 2024).
- Matsuda, H.; Yano, M.; Kubo, M.; Iinuma, M.; Oyama, M.; Mizuno, M. Pharmacological study on citrus fruits. II. Anti-allergic effect of fruit of Citrus unshiu Markovich (2). On flavonoid components. Yakugaku Zasshi 1991, 111, 193–198. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Shanahan, F.; O’Toole, P.W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 565–584. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, Y.M.; Borcherding, D.; Kanthasamy, A.; Kim, H.J.; Willette, A.A.; Jergens, A.; Allenspach, K.; Mochel, J.P. The Gut-Brain Axis in Neurodegenerative Diseases and Relevance of the Canine Model: A Review. Front. Aging Neurosci. 2019, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and archaea using next generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Yang, C.; Mai, J.; Cao, X.; Burberry, A.; Cominelli, F.; Zhang, L. ggpicrust2: An R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics 2023, 39, btad470. [Google Scholar] [CrossRef]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef]
- Seki, T. Clinical effects of the NChinpi on the cognitive impairment of patients with Alzheimer’s disease. Nihon Yakurigaku Zasshi 2015, 145, 234–236. [Google Scholar] [CrossRef]
- Nishino, S.; Fujiki, Y.; Sato, T.; Kato, Y.; Shirai, R.; Oizumi, H.; Yamamoto, M.; Ohbuchi, K.; Miyamoto, Y.; Mizoguchi, K.; et al. Hesperetin, a Citrus Flavonoid, Ameliorates Inflammatory Cytokine-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation. Neurol. Int. 2022, 14, 471–487. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Janney, A.; Powrie, F.; Mann, E.H. Host-microbiota maladaptation in colorectal cancer. Nature 2020, 585, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Hammond, T.C.; Green, S.J.; Jacobs, Y.; Chlipala, G.E.; Xing, X.; Heil, S.; Chen, A.; Aware, C.; Flemister, A.; Stromberg, A.; et al. Gut microbiome association with brain imaging markers, APOE genotype, calcium and vegetable intakes, and obesity in healthy aging adults. Front. Aging Neurosci. 2023, 15, 1227203. [Google Scholar] [CrossRef]
- Soukup, S.T.; Stoll, D.A.; Danylec, N.; Schoepf, A.; Kulling, S.E.; Huch, M. Metabolism of daidzein and genistein by gut bacteria of the class Coriobacteriia. Foods 2021, 10, 2741. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ikoma, Y.; Sugiura, M.; Yano, M.; Hasegawa, Y. Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. J. Agric. Food Chem. 2004, 52, 6653–6659. [Google Scholar] [CrossRef]
- Yamada, M.; Tanabe, F.; Arai, N.; Mitsuzumi, H.; Miwa, Y.; Kubota, M.; Chaen, H.; Kibata, M. Bioavailability of glucosyl hesperidin in rats. Biosci. Biotechnol. Biochem. 2006, 70, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Provoost, L. Cognitive Changes Associated with Aging and Physical Disease in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2024, 54, 101–119. [Google Scholar] [CrossRef]
- Carr, D.; Friedmann, E.; Gee, N.R.; Gilchrist, C.; Sachs-Ericsson, N.; Koodaly, L. Dog walking and the social impact of the COVID-19 pandemic on loneliness in older adults. Animals 2021, 11, 1852. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.S.; Tolbert, M.K.; Dog Aging Project Consortium; Ruple, A. Dog and owner demographics impact dietary choices in Dog Aging Project cohort. J. Am. Vet. Med. Assoc. 2024, 262, 1676–1685. [Google Scholar] [CrossRef]
- Oda, A.; Hakamata, Y.; Kobayashi, E. Pre-Administration of Blackberry Extracts in Induced Ischemia Reperfusion Events in Rodents. Metabolites 2023, 13, 1114. [Google Scholar] [CrossRef] [PubMed]
Powder Sample | Hesperidin | Nobiletin | Limonene | Moisture |
---|---|---|---|---|
Peel of Early-Ripening Mandarin (Wakayama Satsuma Mandarin: Harvested in October 2021) | 9.3 g | 41 mg | 14 mg | 3.2 g |
Peel of Mandarin (Domestic Satsuma Mandarin: Harvested in December 2019) | 6.9 g | 35 mg | 20 mg | 4.5 g |
Powdered Peel of Arita Mandarin (Commercial Product) | 6.4 g * | 32 mg * | 23 mg * | N/A |
Thinned Mandarin (Kinokawa City, Wakayama Prefecture: Harvested in August 2024) | 7.4 g | 21 mg | 75 mg | 1.9 g |
Thinned Mandarin, Dried After Cutting (Kumamoto Prefecture: Harvested in July 2023) | 14 g | 44 mg | 310 mg | 2.7 g |
Thinned Mandarin, Dried After Juicing (Kumamoto Prefecture: Harvested in July 2023) | 14 g | 41 mg | 46 mg | 2.8 g |
Parameter | TP | ALB | A/G Ratio | GLU | CHO | AST | ALT | ALP | GGT | TB | LDH | |
Unit | g/dL | g/dL | - | mg/dL | mg/dL | IU/L | IU/L | IU/L | IU/L | mg/dL | IU/L | |
Pre | 1 | 6.6 | 3.0 | 0.83 | 107 | 155 | 31 | 45 | 29 | 4.0 | 0.04 | 37 |
2 | 6.7 | 3.2 | 0.97 | 109 | 232 | 28 | 31 | 58 | 1.0 | 0.05 | 12 | |
3 | 6.2 | 2.8 | 0.82 | 99 | 200 | 36 | 37 | 50 | 5.3 | 0.02 | 46 | |
4 | 6.1 | 3.3 | 1.18 | 107 | 164 | 29 | 111 | 25 | 4.1 | 0.02 | 18 | |
Mean ± SD | 6.4 ± 0.3 | 3.1 ± 0.2 | 0.95 ± 0.17 | 106 ± 4 | 188 ± 35 | 31 ± 4 | 56 ± 37 | 41 ± 16 | 3.6 ± 1.8 | 0.03 ± 0.02 | 28 ± 16 | |
2w | 1 | 6.3 | 3.1 | 0.97 | 104 | 159 | 30 | 41 | 37 | 10 | 0.10 | 71 |
2 | 6.4 | 3.1 | 0.94 | 102 | 210 | 30 | 40 | 41 | 10 | 0.10 | 86 | |
3 | 6.3 | 3.2 | 1.03 | 93 | 224 | 28 | 34 | 52 | 10 | 0.10 | 96 | |
4 | 6.0 | 3.3 | 1.22 | 98 | 175 | 35 | 69 | 33 | 10 | 0.10 | 64 | |
Mean ± SD | 6.3 ± 0.2 | 3.2 ± 0.1 | 1.04 ± 0.13 | 99 ± 5 | 192 ± 30 | 31 ± 3 | 46 ± 16 | 41 ± 8 | 10 ± 0 | 0.10 ± 0.00 | 79 ± 14 | |
Parameter | CK | BUN | CRE | IP | CA | HCO3 | Na | K | Cl | AG | UN/Cre Ratio | |
Unit | IU/L | mg/dL | mg/dL | mg/dL | mg/dL | mmol/L | mEq/L | mEq/L | mEq/L | mEq/L | - | |
Pre | 1 | 97 | 18 | 0.54 | 5.1 | 9.8 | 21 | 150 | 4.2 | 111 | 22 | 33 |
2 | 72 | 22 | 0.43 | 5.4 | 10.1 | 21 | 149 | 4.3 | 110 | 22 | 50 | |
3 | 282 | 28 | 0.41 | 3.5 | 9.5 | 24 | 146 | 4.3 | 106 | 20 | 69 | |
4 | 77 | 19 | 0.58 | 3.7 | 9.9 | 21 | 149 | 4.3 | 112 | 21 | 32 | |
Mean ± SD | 132 ± 101 | 22 ± 5 | 0.49 ± 0.08 | 4.4 ± 1.0 | 9.8 ± 0.3 | 22 ± 2 | 149 ± 2 | 4.3 ± 0.0 | 110 ± 3 | 21 ± 1 | 46 ± 17 | |
2w | 1 | 46 | 10 | 0.64 | 4.0 | 9.9 | 14 | 143 | 4.2 | 119 | 15 | 16 |
2 | 51 | 9.1 | 0.54 | 3.8 | 9.8 | 14 | 141 | 4.3 | 120 | 12 | 17 | |
3 | 62 | 8.9 | 0.49 | 2.7 | 9.6 | 10 | 141 | 3.8 | 122 | 13 | 18 | |
4 | 38 | 6.3 | 0.69 | 2.6 | 9.7 | 13 | 142 | 3.7 | 120 | 12 | 9 | |
Mean ± SD | 49 ± 10 | 8.6 ± 1.6 | 0.59 ± 0.09 | 3.3 ± 0.7 | 9.8 ± 0.1 | 13 ± 2 | 142 ± 1 | 4.0 ± 0.3 | 120 ± 1 | 13 ± 1 | 15 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakahigashi, J.; Kurikami, M.; Iwai, S.; Iwamoto, S.; Kobayashi, S.; Kobayashi, E. Exploring the Pharmacokinetics and Gut Microbiota Modulation of Hesperidin and Nobiletin from Mandarin Orange Peel in Experimental Dogs: A Pilot Study. Metabolites 2025, 15, 3. https://doi.org/10.3390/metabo15010003
Nakahigashi J, Kurikami M, Iwai S, Iwamoto S, Kobayashi S, Kobayashi E. Exploring the Pharmacokinetics and Gut Microbiota Modulation of Hesperidin and Nobiletin from Mandarin Orange Peel in Experimental Dogs: A Pilot Study. Metabolites. 2025; 15(1):3. https://doi.org/10.3390/metabo15010003
Chicago/Turabian StyleNakahigashi, Jun, Makoto Kurikami, Satomi Iwai, Sadahiko Iwamoto, Shou Kobayashi, and Eiji Kobayashi. 2025. "Exploring the Pharmacokinetics and Gut Microbiota Modulation of Hesperidin and Nobiletin from Mandarin Orange Peel in Experimental Dogs: A Pilot Study" Metabolites 15, no. 1: 3. https://doi.org/10.3390/metabo15010003
APA StyleNakahigashi, J., Kurikami, M., Iwai, S., Iwamoto, S., Kobayashi, S., & Kobayashi, E. (2025). Exploring the Pharmacokinetics and Gut Microbiota Modulation of Hesperidin and Nobiletin from Mandarin Orange Peel in Experimental Dogs: A Pilot Study. Metabolites, 15(1), 3. https://doi.org/10.3390/metabo15010003