Untargeted Metabolomics Reveals Dysregulation of Glycine- and Serine-Coupled Metabolic Pathways in an ALDH1L1-Dependent Manner In Vivo
<p><b>Schematic of analytic approach.</b> Hepatic serine and glycine peak intensities and the ratio of serine-to-glycine peak intensities, were correlated with the intensities of other metabolites in the liver and plasma datasets for both WT and KO mice. Significantly correlated metabolites were then used as inputs for pathway analysis in MetaboAnalyst to determine metabolic pathways significantly correlated with serine, glycine, or the serine-to-glycine ratio for both liver and plasma, and results were compared between WT and KO samples.</p> "> Figure 2
<p><b>Correlation heat map of liver and plasma metabolites using peak intensities in WT (A) and KO (B) mice.</b> Values within the heatmap are Spearman rank correlation values. Red indicates a strong positive correlation whereas blue indicates a strong negative correlation. For each heatmap, the top 20 correlated metabolites with glycine are displayed.</p> "> Figure 3
<p><b>Example correlation between liver glycine and liver cystathionine in ALDH1L1 KO mice.</b> Correlations were performed using peak area values that were calculated by Progenesis QI.</p> "> Figure 4
<p><b>Pathway analysis of liver metabolites correlated with glycine in WT mice.</b> Pathways with <span class="html-italic">p</span> < 0.05 are annotated.</p> "> Figure 5
<p><b>Pathway analysis of liver metabolites correlated with glycine in KO mice.</b> Pathways with <span class="html-italic">p</span> < 0.05 are annotated.</p> "> Figure 6
<p><b>Schematic showing the role of ALDH1L1 in folate metabolism</b>.</p> "> Figure 7
<p><b>Schematic depicting the interaction of folate with glycine, serine, and threonine metabolism</b>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metabolomics Data
2.2. Correlation Analysis
2.3. Pathway Analysis
3. Results
3.1. Correlation of Serine and Glycine with Other Metabolites
3.2. Pathway Correlations with Glycine Using Liver Metabolites
3.3. Pathway Correlations with Serine Using Liver Metabolites
3.4. Pathway Correlations with the Serine-to-Glycine Ratio Using Liver Metabolites
3.5. Pathway Correlations with Glycine Using Plasma Metabolites
3.6. Pathway Correlations with Serine Using Plasma Metabolites
3.7. Pathway Correlations with the Serine-to-Glycine Ratio Using Plasma Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krupenko, N.I.; Sharma, J.; Fogle, H.M.; Pediaditakis, P.; Strickland, K.C.; Du, X.; Helke, K.L.; Sumner, S.; Krupenko, S.A. Knockout of putative tumor suppressor Aldh1l1 in mice reprograms metabolism to accelerate growth of tumors in a diethylnitrosamine (DEN) model of liver carcinogenesis. Cancers 2021, 13, 3219. [Google Scholar] [CrossRef] [PubMed]
- Rushing, B.R.; Fogle, H.M.; Sharma, J.; You, M.; Mccormac, J.P.; Molina, S.; Sumner, S.; Krupenko, N.I.; Krupenko, S.A. Exploratory Metabolomics Underscores the Folate Enzyme ALDH1L1 as a Regulator of Glycine and Methylation Reactions. Molecules 2022, 27, 8394. [Google Scholar] [CrossRef] [PubMed]
- Oleinik, N.V.; Krupenko, N.I.; Krupenko, S.A. Epigenetic silencing of ALDH1L1, a metabolic regulator of cellular proliferation, in cancers. Genes Cancer 2011, 2, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Tackels-Horne, D.; Davidgoodman, M.; Williams, A.J.; Wilson, D.J.; Eskandari, T.; Vogt, L.M.; Boland, J.F.; Scherf, U.; Vockley, J.G. Identification of differentially expressed genes in hepatocellular carcinoma and metastatic liver tumors by oligonucleotide expression profiling. Cancer 2001, 92, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, Q.; Wang, X. Transcriptional landscape of human cancers. Oncotarget 2017, 8, 34534–34551. [Google Scholar] [CrossRef]
- Chen, X.Q.; He, J.R.; Wang, H.Y. Decreased expression of ALDH1L1 is associated with a poor prognosis in hepatocellular carcinoma. Med. Oncol. 2012, 29, 1843–1849. [Google Scholar] [CrossRef]
- Krupenko, S.A.; Oleinik, N.V. 10-Formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ. 2002, 13, 227–236. [Google Scholar]
- Prakasam, A.; Ghose, S.; Oleinik, N.V.; Bethard, J.R.; Peterson, Y.K.; Krupenko, N.I.; Krupenko, S.A. JNK1/2 regulate Bid by direct phosphorylation at Thr59 in response to ALDH1L1. Cell Death Dis. 2014, 5, e1358. [Google Scholar] [CrossRef]
- Holecek, M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients 2022, 14, 1987. [Google Scholar] [CrossRef]
- Ye, L.; Sun, Y.; Jiang, Z.; Wang, G. L-Serine, an Endogenous Amino Acid, Is a Potential Neuroprotective Agent for Neurological Disease and Injury. Front. Mol. Neurosci. 2021, 14, 726665. [Google Scholar] [CrossRef]
- Alves, A.; Bassot, A.; Bulteau, A.-L.; Pirola, L.; Morio, B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.A.; Begum, P.S.; Viswanath, B.; Rajagopal, S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxid. Med. Cell. Longev. 2017, 2017, 1716701. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 2013, 45, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 2014, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Krupenko, N.I.; Sharma, J.; Pediaditakis, P.; Fekry, B.; Helke, K.L.; Du, X.; Sumner, S.; Krupenko, S.A. Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci. Rep. 2019, 9, 14937. [Google Scholar] [CrossRef]
- Sharma, J.; Rushing, B.R.; Hall, M.S.; Helke, K.L.; McRitchie, S.L.; Krupenko, N.I.; Sumner, S.J.; Krupenko, S.A. Sex-Specific Metabolic Effects of Dietary Folate Withdrawal in Wild-Type and Aldh1l1 Knockout Mice. Metabolites 2022, 12, 454. [Google Scholar] [CrossRef]
- Krupenko, S.A.; Cole, S.A.; Hou, R.; Haack, K.; Laston, S.; Mehta, N.R.; Comuzzie, A.G.; Butte, N.F.; Voruganti, V.S. Genetic variants in ALDH1L1 and GLDC influence the serine-to-glycine ratio in Hispanic children. Am. J. Clin. Nutr. 2022, 116, 500–510. [Google Scholar] [CrossRef]
- Rushing, B.R.; Schroder, M.; Sumner, S.C.J. Comparison of Lysis and Detachment Sample Preparation Methods for Cultured Triple-Negative Breast Cancer Cells Using UHPLC–HRMS-Based Metabolomics. Metabolites 2022, 12, 168. [Google Scholar] [CrossRef]
- Rushing, B.R.; Wiggs, A.; Molina, S.; Schroder, M.; Sumner, S. Metabolomics Analysis Reveals Novel Targets of Chemosensitizing Polyphenols and Omega-3 Polyunsaturated Fatty Acids in Triple Negative Breast Cancer Cells. Int. J. Mol. Med. 2023, 24, 4406. [Google Scholar] [CrossRef]
- Rushing, B.R.; Tilley, S.; Molina, S.; Schroder, M.; Sumner, S. Commonalities in Metabolic Reprogramming between Tobacco Use and Oral Cancer. Int. J. Environ. Res. Public Health 2022, 19, 10261. [Google Scholar] [CrossRef]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, glycine and one-carbon metabolism in cancer (Review). Int. J. Oncol. 2021, 58, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Siska, C.; Kechris, K. Differential correlation for sequencing data. BMC Res. Notes 2017, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.A.; Pediaditakis, P.; Malakhau, Y.; Esmaeilniakooshkghazi, A.; Ashkavand, Z.; Sereda, V.; Krupenko, N.I.; Krupenko, S.A. CHIP E3 ligase mediates proteasomal degradation of the proliferation regulatory protein ALDH1L1 during the transition of NIH3T3 fibroblasts from G0/G1 to S-phase. PLoS ONE 2018, 13, e0199699. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef]
- Sasaki, M.; Yamamoto, K.; Ueda, T.; Irokawa, H.; Takeda, K.; Sekine, R.; Itoh, F.; Tanaka, Y.; Kuge, S.; Shibata, N. One-carbon metabolizing enzyme ALDH1L1 influences mitochondrial metabolism through 5-aminoimidazole-4-carboxamide ribonucleotide accumulation and serine depletion, contributing to tumor suppression. Sci. Rep. 2023, 13, 13486. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Zhang, L.; Kong, X.; Li, F. Serine-to-glycine ratios in low-protein diets regulate intramuscular fat by affecting lipid metabolism and myofiber type transition in the skeletal muscle of growing-finishing pigs. Anim. Nutr. 2021, 7, 384–392. [Google Scholar] [CrossRef]
- Brown, G.M. Biosynthesis of Pantothenic Acid and Coenzyme A. Compr. Biochem. 1970, 21, 73–80. [Google Scholar] [CrossRef]
- Leonardi, R.; Zhang, Y.M.; Rock, C.O.; Jackowski, S. Coenzyme A: Back in action. Prog. Lipid Res. 2005, 44, 125–153. [Google Scholar] [CrossRef]
- Tsybovsky, Y.; Sereda, V.; Golczak, M.; Krupenko, N.I.; Krupenko, S.A. Structure of putative tumor suppressor ALDH1L1. Commun. Biol. 2022, 5, 3. [Google Scholar] [CrossRef]
Liver Metabolite | p-Value |
---|---|
Cystathionine | 1.71 × 10−5 |
Serine | 2.38 × 10−5 |
Tryptophan | 0.00223 |
Valerylcarnitine | 0.00287 |
Guanosine | 0.00545 |
Glutamine | 0.00701 |
5-Hydroxytryptophan | 0.00792 |
Tryptamine | 0.00892 |
Xanthine | 0.0155 |
Histidine | 0.0178 |
4-Hydroxy-L-Phenylglycine | 0.0204 |
Octanoylcarnitine | 0.0204 |
Cytidine | 0.0239 |
5′-Deoxyadenosine | 0.0297 |
Beta-Nicotinamide mononucleotide | 0.0316 |
Tyrosine | 0.0316 |
Sarcosine | 0.0325 |
4-Guanidinobutyric acid | 0.0325 |
1-Methyl-L-histidine | 0.0335 |
Hexanoyl Glycine | 0.0366 |
Oxoproline | 0.0376 |
Aspartic acid | 0.0387 |
Histidinol | 0.0387 |
N-Methyl-glutamic acid | 0.0410 |
Anserine | 0.0458 |
Pantothenate | 0.0496 |
Metabolic Pathway | Glycine vs. Plasma | Serine vs. Plasma | Serine-to-Glycine Ratio vs. Plasma | Glycine vs. Liver | Serine vs. Liver | Serine-to-Glycine Ratio vs. Liver | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WT | KO | WT | KO | WT | KO | WT | KO | WT | KO | WT | KO | |
Alanine, aspartate and glutamate metabolism | 0.0042 | 0.026 | 0.0011 | |||||||||
Aminoacyl-tRNA biosynthesis | 0.014 | 0.062 | 0.025 | 1.94 × 10−4 | 0.071 | 1.08 × 10−4 | 0.080 | 1.36 × 10−7 | ||||
Arginine and proline metabolism | 0.097 | 0.092 | 0.026 | 0.038 | 7.36 × 10−4 | |||||||
Arginine biosynthesis | 0.003 | 0.012 | 0.023 | 0.0079 | 0.0022 | |||||||
beta-Alanine metabolism | 0.081 | 0.015 | 0.0049 | 0.0075 | 2.22 × 10−4 | 0.0015 | ||||||
Biotin metabolism | 0.058 | 0.083 | ||||||||||
Butanoate metabolism | 0.086 | |||||||||||
Cysteine and methionine metabolism | 0.085 | 0.036 | 0.018 | 0.026 | ||||||||
D-Glutamine and D-glutamate metabolism | 0.035 | 0.002 | 0.099 | |||||||||
Galactose metabolism | 0.025 | 0.038 | ||||||||||
Glutathione metabolism | 0.011 | 0.045 | 0.030 | 0.008 | 9.66 × 10−6 | |||||||
Glycerolipid metabolism | 0.092 | |||||||||||
Glycerophospholipid metabolism | 0.064 | |||||||||||
Glycine, serine and threonine metabolism | 0.0090 | 0.0032 | 0.0023 | 0.0040 | 0.028 | 0.091 | 4.23 × 10−4 | |||||
Glyoxylate and dicarboxylate metabolism | 0.057 | |||||||||||
Histidine metabolism | 0.092 | 0.062 | 0.019 | 3.34 × 10−4 | 1.11 × 10−4 | 0.010 | 8.32 × 10−6 | 0.024 | ||||
Linoleic acid metabolism | 0.049 | 0.075 | 0.057 | |||||||||
Lysine degradation | 0.065 | 0.043 | 0.056 | |||||||||
Nicotinate and nicotinamide metabolism | 0.058 | 0.03 | 3.39 × 10−4 | 0.034 | ||||||||
Nitrogen metabolism | 0.035 | 0.0021 | 0.10 | |||||||||
Pantothenate and CoA biosynthesis | 0.011 | 0.041 | 0.053 | |||||||||
Phenylalanine metabolism | 0.022 | |||||||||||
Phenylalanine, tyrosine and tryptophan biosynthesis | 0.048 | 0.067 | 0.002 | |||||||||
Purine metabolism | 8.19 × 10−4 | 0.025 | 0.039 | 0.076 | ||||||||
Pyrimidine metabolism | 0.021 | 0.096 | 0.011 | 0.028 | 0.040 | |||||||
Riboflavin metabolism | 0.016 | |||||||||||
Sphingolipid metabolism | 0.031 | |||||||||||
Tryptophan metabolism | 0.010 | 2.84 × 10−4 | 0.016 | 0.032 | 0.0078 | |||||||
Tyrosine metabolism | 0.092 | |||||||||||
Valine, leucine and isoleucine biosynthesis | 0.067 | |||||||||||
Vitamin B6 metabolism | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, G.; Molina, S.; Krupenko, S.A.; Sumner, S.; Rushing, B.R. Untargeted Metabolomics Reveals Dysregulation of Glycine- and Serine-Coupled Metabolic Pathways in an ALDH1L1-Dependent Manner In Vivo. Metabolites 2024, 14, 696. https://doi.org/10.3390/metabo14120696
Fu G, Molina S, Krupenko SA, Sumner S, Rushing BR. Untargeted Metabolomics Reveals Dysregulation of Glycine- and Serine-Coupled Metabolic Pathways in an ALDH1L1-Dependent Manner In Vivo. Metabolites. 2024; 14(12):696. https://doi.org/10.3390/metabo14120696
Chicago/Turabian StyleFu, Grace, Sabrina Molina, Sergey A. Krupenko, Susan Sumner, and Blake R. Rushing. 2024. "Untargeted Metabolomics Reveals Dysregulation of Glycine- and Serine-Coupled Metabolic Pathways in an ALDH1L1-Dependent Manner In Vivo" Metabolites 14, no. 12: 696. https://doi.org/10.3390/metabo14120696
APA StyleFu, G., Molina, S., Krupenko, S. A., Sumner, S., & Rushing, B. R. (2024). Untargeted Metabolomics Reveals Dysregulation of Glycine- and Serine-Coupled Metabolic Pathways in an ALDH1L1-Dependent Manner In Vivo. Metabolites, 14(12), 696. https://doi.org/10.3390/metabo14120696