Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review
<p>Timeline indicating organogenesis and development of different structures during gestation in cattle [<a href="#B45-metabolites-13-00593" class="html-bibr">45</a>,<a href="#B46-metabolites-13-00593" class="html-bibr">46</a>,<a href="#B52-metabolites-13-00593" class="html-bibr">52</a>,<a href="#B53-metabolites-13-00593" class="html-bibr">53</a>,<a href="#B54-metabolites-13-00593" class="html-bibr">54</a>,<a href="#B55-metabolites-13-00593" class="html-bibr">55</a>,<a href="#B56-metabolites-13-00593" class="html-bibr">56</a>,<a href="#B57-metabolites-13-00593" class="html-bibr">57</a>,<a href="#B58-metabolites-13-00593" class="html-bibr">58</a>].</p> "> Figure 2
<p>Schematic overview of the role of estrogen, Ca<sup>+2</sup>, and K<sup>+</sup> in the establishment of pregnancy-associated relaxation and myogenic tone reduction. Pregnancy increases the basal estrogen level and demethylate CpG at the Sp1 promotor site to increase <span class="html-italic">KCNMB1</span> expression [<a href="#B61-metabolites-13-00593" class="html-bibr">61</a>]. <span class="html-italic">KCNMB1</span> leads to opening of <span class="html-italic">BKca</span> channels, causing efflux of K<sup>+</sup> and release of Ca<sup>+2</sup>, which further promote <span class="html-italic">KCNMB1</span> expression [<a href="#B59-metabolites-13-00593" class="html-bibr">59</a>]. Change in membrane potential of vascular smooth muscle in the uterine artery by efflux of K<sup>+</sup> and release of Ca<sup>+2</sup> results in uterine artery dilation along with pregnancy-induced relaxation [<a href="#B61-metabolites-13-00593" class="html-bibr">61</a>]. <span class="html-italic">KCNMB1,</span> potassium calcium-activated channel subfamily M regulatory Beta subunit 1; BK<sub>Ca</sub>, large-conductance Ca<sup>+2</sup>-activated K<sup>+</sup> channel receptors.</p> "> Figure 3
<p>Proposed mechanism of fetal–maternal transport of selenium and iodine and their role in thyroxine metabolism in cattle. Maternal selenium concentration impacts the expression of selenoproteins, i.e., <span class="html-italic">SEPP1</span> and <span class="html-italic">Dio2</span> in dam’s liver [<a href="#B89-metabolites-13-00593" class="html-bibr">89</a>]. <span class="html-italic">SEPP1</span> will be transported to fetus by <span class="html-italic">ApoER2,</span> and <span class="html-italic">Dio2</span> will affect thyroxines interconversion across fetal–maternal tissues [<a href="#B85-metabolites-13-00593" class="html-bibr">85</a>,<a href="#B89-metabolites-13-00593" class="html-bibr">89</a>,<a href="#B90-metabolites-13-00593" class="html-bibr">90</a>,<a href="#B91-metabolites-13-00593" class="html-bibr">91</a>,<a href="#B92-metabolites-13-00593" class="html-bibr">92</a>]. <span class="html-italic">SEPSECS</span>, (Sep (O-Phosphoserine) TRNA:Sec (Selenocysteine) TRNA Synthase); <span class="html-italic">SBP2</span>, selenocysteine binding protein 2; <span class="html-italic">SEPP1</span>, Selenoprotein-P; <span class="html-italic">Dio2</span>, TypeII Deiodinase; <span class="html-italic">ApoER2</span>, Apolipoprotein E Receptor-2; <span class="html-italic">Dio3</span>, TypeIII Deiodinase; <span class="html-italic">T3</span>, Triiodothyronine-3; <span class="html-italic">T4</span>, Thyroxine-4.</p> "> Figure 4
<p>Proposed mechanism of feto-maternal transport of Ca, P, Mg, and iodine and their roles in regulating molecular mechanism of parathyroid hormone (<span class="html-italic">PTH</span>) and calcitriol (1,25-dihydroxycholecalciferol, 1,25(OH)2D) in cattle. Maternal Ca<sup>+2</sup> concentration causes a change in the expression of <span class="html-italic">PTHrP</span> in placenta and mammary tissue along with the expression of <span class="html-italic">CaSR</span> in placenta [<a href="#B105-metabolites-13-00593" class="html-bibr">105</a>,<a href="#B111-metabolites-13-00593" class="html-bibr">111</a>,<a href="#B113-metabolites-13-00593" class="html-bibr">113</a>]. <span class="html-italic">PTH</span> is regulated by <span class="html-italic">CaSR</span> in the fetus and maternal <span class="html-italic">PTHrP</span> binds to <span class="html-italic">PTHR1</span> in the kidney and activates the cAMP-associated conversion of calcitriol (1,25(OH)D), in which Mg<sup>+2</sup> will be used as a cofactor [<a href="#B109-metabolites-13-00593" class="html-bibr">109</a>,<a href="#B110-metabolites-13-00593" class="html-bibr">110</a>,<a href="#B111-metabolites-13-00593" class="html-bibr">111</a>]. <span class="html-italic">CaSR</span>, calcium sensing receptor; <span class="html-italic">PTHrP</span>, parathyroid hormone related proteins; <span class="html-italic">PTHR1,</span> parathyroid hormone 1 receptor; <span class="html-italic">cAMP</span>, cyclic adenosine monophosphate; <span class="html-italic">PKA</span>, phosphokinase activated; <span class="html-italic">CREB</span>, cAMP response element-binding protein; calcitriol, 1,25(OH)D.</p> "> Figure 5
<p>Proposed mechanism of fetomaternal transport of Fe, Mn, Zn, and Cu in cattle. Iron or manganese can form complexes with transferrin and bind to <span class="html-italic">TfR1</span> in the placenta, which transports Fe or Mn to the fetus [<a href="#B135-metabolites-13-00593" class="html-bibr">135</a>,<a href="#B137-metabolites-13-00593" class="html-bibr">137</a>]. Cu and Zn are also transported by placental transporters <span class="html-italic">CTR1</span> or <span class="html-italic">Cu-Zn SOD</span> [<a href="#B77-metabolites-13-00593" class="html-bibr">77</a>,<a href="#B81-metabolites-13-00593" class="html-bibr">81</a>,<a href="#B138-metabolites-13-00593" class="html-bibr">138</a>,<a href="#B139-metabolites-13-00593" class="html-bibr">139</a>] and <span class="html-italic">ZIP14</span> [<a href="#B75-metabolites-13-00593" class="html-bibr">75</a>], respectively. All these mentioned minerals are in the divalent form and, in the fetus, are transported via <span class="html-italic">DMT1</span> [<a href="#B129-metabolites-13-00593" class="html-bibr">129</a>,<a href="#B134-metabolites-13-00593" class="html-bibr">134</a>,<a href="#B135-metabolites-13-00593" class="html-bibr">135</a>,<a href="#B136-metabolites-13-00593" class="html-bibr">136</a>]. <span class="html-italic">ZnT1</span>, zinc transporter 1; <span class="html-italic">MT1A</span>, metallothionine-1A; <span class="html-italic">ZIP14,</span> zinc-importing protein; <span class="html-italic">DMT1,</span> divalent metal transporter 1; <span class="html-italic">CTR1,</span> copper transporter protein 1; <span class="html-italic">Cu-Zn SOD</span>, copper zinc superoxide dismutase; <span class="html-italic">ATOX1</span>, antioxidant 1 copper chaperone; <span class="html-italic">ATP7A</span>, ATPase copper-transporting alpha; <span class="html-italic">TfR1</span>, transferrin 1 receptor.</p> ">
Abstract
:1. Introduction
2. Fetal Programming as a Multifactorial System
3. The Roles of Minerals in Fetal Genome Regulation
4. Feto-Maternal Crosstalk
5. Final Considerations
- Calcium in dyslipidemia and insulin resistance;
- Zinc in neural, cardiac, and general organ development and trace mineral transport;
- Selenium in reproductive function, the regulation of the GH-IGF system, and the thyroid hormone system;
- Magnesium in glucocorticoid metabolism;
- Copper in oxidative stress, the regulation of the GH-IGF system, and placental development;
- Calcium and potassium in the establishment of pregnancy and the regulation of placental vascular tone;
- Selenium and iron in growth hormone metabolism and myogenesis;
- Magnesium, calcium, and phosphorous in skeletal development and parathyroid hormone and vitamin D metabolism.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minelli, A. Animal Development, an Open-Ended Segment of Life. Biol. Theory 2011, 6, 4–15. [Google Scholar] [CrossRef]
- Love, A.C. Explaining the Ontogeny of Form: Philosophical Issue; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Badyaev, A.V. Maternal Effects as Generators of Evolutionary Change: A Reassessment. Ann. N. Y. Acad. Sci. 2008, 1133, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, E.; Beldade, P. Genomics of Developmental Plasticity in Animals. Front. Genet. 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jones, R.N.; Glymour, M.M. Implications of Lifecourse Epidemiology for Research on Determinants of Adult Disease. Public Health Rev. 2010, 32, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Arima, Y.; Fukuoka, H. Developmental Origins of Health and Disease Theory in Cardiology. J. Cardiol. 2020, 76, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. Mothers, Babies and Disease in Later Life. BMJ 1994, 310, 180. [Google Scholar]
- Barker, D.J.P. The Fetal and Infant Origins of Adult Disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef]
- Prentice, A.M.; Moore, S.E. Early Programming of Adult Diseases in Resource Poor Countries. Arch. Dis. Child. 2005, 90, 429–432. [Google Scholar] [CrossRef]
- Widdowson, E.M.; McCance, R.A. A Review: New Thoughts on Growth. Pediatr. Res. 1975, 9, 154–156. [Google Scholar] [CrossRef]
- Abu-Saad, K.; Fraser, D. Maternal Nutrition and Birth Outcomes. Epidemiol. Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal Nutrition and Fetal Development. J. Nutr. 2004, 134, 2169–2172. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-Invited Review: Intrauterine Growth Retardation: Implications for the Animal Sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef]
- Innis, S.M. Influence of Maternal Cholestyramine Treatment on Cholesterol and Bile Acid Metabolism in Adult Offspring. J. Nutr. 1983, 113, 2464–2470. [Google Scholar] [CrossRef]
- Dicke, J.M.; Henderson, G.I. Placental Amino Acid Uptake in Normal and Complicated Pregnancies. Am. J. Med. Sci. 1988, 295, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Stalker, L.A.; Ciminski, L.A.; Adams, D.C.; Klopfenstein, T.J.; Clark, R.T. Effects of Weaning Date and Prepartum Protein Supplementation on Cow Performance and Calf Growth. Rangel. Ecol. Manag. 2007, 60, 578–587. [Google Scholar] [CrossRef]
- Long, N.M.; Tousley, C.B.; Underwood, K.R.; Paisley, S.I.; Means, W.J.; Hess, B.W.; Du, M.; Ford, S.P. Effects of Early- to Mid-Gestational Undernutrition with or without Protein Supplementation on Offspring Growth, Carcass Characteristics, and Adipocyte Size in Beef Cattle. J. Anim. Sci. 2012, 90, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Crouse, M.S.; Caton, J.S.; Cushman, R.A.; McLean, K.J.; Dahlen, C.R.; Borowicz, P.P.; Reynolds, L.P.; Ward, A.K. Moderate Nutrient Restriction of Beef Heifers Alters Expression of Genes Associated with Tissue Metabolism, Accretion, and Function in Fetal Liver, Muscle, and Cerebrum by Day 50 of Gestation. Transl. Anim. Sci. 2019, 3, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Diniz, W.J.S.; Crouse, M.S.; Cushman, R.A.; McLean, K.J.; Caton, J.S.; Dahlen, C.R.; Reynolds, L.P.; Ward, A.K. Cerebrum, Liver, and Muscle Regulatory Networks Uncover Maternal Nutrition Effects in Developmental Programming of Beef Cattle during Early Pregnancy. Sci. Rep. 2021, 11, 2771. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; de Blasio, M.J.; Harland, M.L.; Gatford, K.L.; Owens, J.A. Maternal Methyl Donor and Cofactor Supplementation in Late Pregnancy Increases β-Cell Numbers at 16 Days of Life in Growth-Restricted Twin Lambs. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E381–E390. [Google Scholar] [CrossRef]
- Reynolds, L.P.; McLean, K.J.; McCarthy, K.L.; Diniz, W.J.S.; Menezes, A.C.B.; Forcherio, J.C.; Scott, R.R.; Borowicz, P.P.; Ward, A.K.; Dahlen, C.R.; et al. Nutritional Regulation of Embryonic Survival, Growth, and Development. Adv. Exp. Med. Biol. 2022, 1354, 63–76. [Google Scholar] [CrossRef]
- Foxcroft, G.R.; Dixon, W.T.; Novak, S.; Putman, C.T.; Town, S.C.; Vinsky, M.D. The Biological Basis for Prenatal Programming of Postnatal Performance in Pigs. J. Anim. Sci. 2006, 84, E105–E112. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, Z.; Dai, Z.; Wang, X.; Li, J.; Wang, B.; Wu, G. Fetal and Neonatal Programming of Postnatal Growth and Feed Efficiency in Swine. J. Anim. Sci. Biotechnol. 2017, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.P.; Long, N.M.; Ford, S.P.; Long, N.M. Evidence for Similar Changes in Offspring Phenotype Following Either Maternal Undernutrition or Overnutrition: Potential Impact on Fetal Epigenetic Mechanisms. Reprod. Fertil. Dev. 2011, 24, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of Maternal Nutrition on Conceptus Growth and Offspring Performance: Implications for Beef Cattle Production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed]
- Wessels, I. Epigenetics and Minerals: An Overview. In Handbook of Nutrition, Diet, and Epigenetics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Harvey, K.M.; Fernandes Cooke, R.; Da, R.; Marques, S.; Paterson, M.; Relling, A.E. Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals 2021, 11, 1159. [Google Scholar] [CrossRef]
- Dahlen, C.R.; Reynolds, L.P.; Caton, J.S. Selenium Supplementation and Pregnancy Outcomes. Front. Nutr. 2022, 9, 4715965. [Google Scholar] [CrossRef]
- Michels, K.B. Developmental Plasticity: Friend or Foe? Evol. Med. Public Health 2017, 2017, 183. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, T.M.; Micke, G.; Greer, R.M.; Irving-Rodgers, H. Dietary Manipulation of Bos Indicus× Heifers during Gestation Affects the Reproductive Development of Their Heifer Calves. CSIRO Publ. 2009, 21, 773–784. [Google Scholar] [CrossRef]
- Ireland, J.J.; Smith, G.W.; Scheetz, D.; Jimenez-Krassel, F.; Folger, J.K.; Ireland, J.L.H.; Mossa, F.; Lonergan, P.; Evans, A.C.O. Does Size Matter in Females? An Overview of the Impact of the High Variation in the Ovarian Reserve on Ovarian Function and Fertility, Utility of Anti-Müllerian Hormone As. CSIRO Publ. 2011, 23, 1–14. [Google Scholar] [CrossRef]
- Roberts, A.J.; Petersen, M.K.; Funston, R.N. BEEF SPECIES SYMPOSIUM: Can We Build the Cowherd by Increasing Longevity of Females? J. Anim. Sci. 2015, 93, 4235–4243. [Google Scholar] [CrossRef]
- Patel, M.S.; Srinivasan, M. Metabolic Programming in the Immediate Postnatal Life. Ann. Nutr. Metab. 2011, 58, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, C.R.; Borowicz, P.P.; Ward, A.K.; Caton, J.S.; Czernik, M.; Palazzese, L.; Loi, P.; Reynolds, L.P. Programming of Embryonic Development. Int. J. Mol. Sci. 2021, 22, 1668. [Google Scholar] [CrossRef]
- Clara, A.; Menezes, B.; Dahlen, C.R.; Mccarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; et al. Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at Day 83 of Gestation. Metabolites 2023, 13, 175. [Google Scholar] [CrossRef]
- Crouse, M.S.; McCarthy, K.L.; Menezes, A.C.B.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; et al. Vitamin and Mineral Supplementation and Rate of Weight Gain during the First Trimester of Gestation in Beef Heifers Alters the Fetal Liver Amino Acid, Carbohydrate, and Energy Profile at Day 83 of Gestation. Metabolites 2022, 12, 696. [Google Scholar] [CrossRef]
- Haggarty, P. Fatty Acid Supply to the Human Fetus. Annu. Rev. Nutr. 2010, 30, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L.; Vonnahme, K.A.; Adams, D.C.; Lardy, G.P.; Funston, R.N. Effects of Dam Nutrition on Growth and Reproductive Performance of Heifer Calves. J. Anim. Sci. 2007, 85, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Underwood, K.R.; Tong, J.F.; Price, P.L.; Roberts, A.J.; Grings, E.E.; Hess, B.W.; Means, W.J.; Du, M. Nutrition during Mid to Late Gestation Affects Growth, Adipose Tissue Deposition, and Tenderness in Cross-Bred Beef Steers. Meat Sci. 2010, 86, 588–593. [Google Scholar] [CrossRef]
- Wu, G.; Imhoff-Kunsch, B.; Girard, A.W. Biological Mechanisms for Nutritional Regulation of Maternal Health and Fetal Development. Paediatr. Perinat. Epidemiol. 2012, 26, 4–26. [Google Scholar] [CrossRef]
- Rasby, R.; Berger, A.; Bauer, D.; Brink, D. Minerals and Vitamins for Beef Cows; University of Nebraska-Lincoln: Lincoln, NE, USA, 2011. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle, 8th revised ed.; National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th revised ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Mineral Tolerance of Animals; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Warner, E.D. The Organogenesis and Early Histogenesis of the Bovine Stomach. Am. J. Anat. 1958, 102, 33–63. [Google Scholar] [CrossRef]
- Caton, J.S.; Crouse, M.S.; McLean, K.J.; Dahlen, C.R.; Ward, A.K.; Cushman, R.A.; Grazul-Bilska, A.T.; Neville, B.W.; Borowicz, P.P.; Reynolds, L.P. Maternal Periconceptual Nutrition, Early Pregnancy, and Developmental Outcomes in Beef Cattle. J. Anim. Sci. 2020, 98, skaa358. [Google Scholar] [CrossRef]
- Robinson, J.J.; Sinclair, K.D.; McEvoy, T.G. Nutritional Effects on Foetal Growth. Anim. Sci. 1999, 68, 315–331. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Crouse, M.S.; Caton, J.S.; Claycombe-Larson, K.J.; Lindholm-Perry, A.K.; Reynolds, L.P.; Dahlen, C.R.; Borowicz, P.P.; Ward, A.K. DNA Methylation Dataset of Bovine Embryonic Fibroblast Cells Treated with Epigenetic Modifiers and Divergent Energy Supply. Data Brief 2022, 42, 108074. [Google Scholar] [CrossRef]
- Crouse, M.S.; Caton, J.S.; Claycombe-Larson, K.J.; Diniz, W.J.S.; Lindholm-Perry, A.K.; Reynolds, L.P.; Dahlen, C.R.; Borowicz, P.P.; Ward, A.K. Epigenetic Modifier Supplementation Improves Mitochondrial Respiration and Growth Rates and Alters DNA Methylation of Bovine Embryonic Fibroblast Cells Cultured in Divergent Energy Supply. Front. Genet. 2022, 13, 812764. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Ward, A.K.; Caton, J.S. Epigenetics and Developmental Programming in Ruminants: Long-Term Impacts on Growth and Development. In Biology of Domestic Animals; Taylor & Francis Group: Abingdon, UK, 2017; pp. 85–121. [Google Scholar] [CrossRef]
- Meyer, A.M.; Caton, J.S.; Hess, B.W.; Ford, S.P.; Reynolds, L.P. Epigenetics and Effects on the Neonate That May Impact Feed Efficiency. In Feed Efficiency in the Beef Industry; Wiley: Hoboken, NJ, USA, 2012; pp. 199–223. [Google Scholar] [CrossRef]
- Telford, N.A.; Watson, A.J.; Schultz, G.A. Transition from Maternal to Embryonic Control in Early Mammalian Development: A Comparison of Several Species. Mol. Reprod. Dev. 1990, 26, 90–100. [Google Scholar] [CrossRef]
- Peters, A.R. Embryo Mortality in the Cow. Anim. Breed. Abstr. 1996, 64, 587–598. [Google Scholar] [CrossRef]
- Flechon, J.E.; Renard, J.P. A Scanning Electron Microscope Study of the Hatching of Bovine Blastocysts in Vitro. J. Reprod. Fertil. 1978, 53, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.F. Evaluating the Bovine Embryo. Theriogenology 1981, 15, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.G.; Oteruelo, F.T. An Ultrastructural Study of the Differentiation of Skeletal Muscle in the Bovine Fetus. Anat. Embryol. 1981, 162, 403–417. [Google Scholar] [CrossRef]
- Winters, L.M.; Green, W.W.; Comstock, R.E. Prenatal Development of the Bovine; Agricultural Experiment Station: New Haven, CT, USA, 1942. [Google Scholar]
- Forde, N.; Beltman, M.E.; Duffy, G.B.; Duffy, P.; Mehta, J.P.; Ó’Gaora, P.; Roche, J.F.; Lonergan, P.; Crowe, M.A. Changes in the Endometrial Transcriptome During the Bovine Estrous Cycle: Effect of Low Circulating Progesterone and Consequences for Conceptus Elongation. Biol. Reprod. 2011, 84, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Dasgupta, C.; Xiong, F.; Zhang, L. Epigenetic Upregulation of Large-Conductance Ca2+- Activated K+ Channel Expression in Uterine Vascular Adaptation to Pregnancy. Hypertension 2014, 64, 610–618. [Google Scholar] [CrossRef]
- Bresnitz, W.; Lorca, R.A. Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. Int. J. Mol. Sci. 2022, 23, 9446. [Google Scholar] [CrossRef] [PubMed]
- Nagar, D.; Liu, X.T.; Rosenfeld, C.R. Estrogen Regulates Β1-Subunit Expression in Ca 2+-Activated K+ Channels in Arteries from Reproductive Tissues. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Veiga, G.A.L.; Milazzotto, M.P.; Nichi, M.; Lúcio, C.F.; Silva, L.C.G.; Angrimani, D.S.R.; Vannucchi, C.I. Gene Expression of Estrogen and Oxytocin Receptors in the Uterus of Pregnant and Parturient Bitches. Braz. J. Med. Biol. Res. 2015, 48, 339–343. [Google Scholar] [CrossRef]
- Magness, R.R. Maternal Cardiovascular and Other Physiologic Responses to the Endocrinology of Pregnancy. In Endocrinology of Pregnancy; Springer: Berlin/Heidelberg, Germany, 1998; pp. 507–539. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Vonnahme, K.A.; Luther, J.S.; Buchanan, D.S.; Hafez, S.A.; Grazul-Bilska, A.T.; Redmer, D.A. Uteroplacental Vascular Development and Placental Function: An Update. Int. J. Dev. Biol. 2010, 54, 355–365. [Google Scholar] [CrossRef]
- Goff, J.P. Invited Review: Mineral Absorption Mechanisms, Mineral Interactions That Affect Acid-Base and Antioxidant Status, and Diet Considerations to Improve Mineral Status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.L. Teratogenic Effects of Essential Trace Metals: Deficiency and Excesses. In Toxicology of Metals; Chang, L.W., Magos, L., Suzuki, T., Eds.; Academic Press: Cambridge, MA, USA, 1996; pp. 977–1001. [Google Scholar]
- Rogers, J.M.; Keen, C.L.; Hurley, L.S. Zinc Deficiency in Pregnant Long-Evans Hooded Rats: Teratogenicity and Tissue Trace Elements. Teratology 1985, 31, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, N.; Zhu, D. Bioabsorbable Zinc Ion Induced Biphasic Cellular Responses in Vascular Smooth Muscle Cells. Sci. Rep. 2016, 6, 26661. [Google Scholar] [CrossRef] [PubMed]
- Zong, L.; Wei, X.; Gou, W.; Huang, P.; Lv, Y. Zinc Improves Learning and Memory Abilities of Fetal Growth Restriction Rats and Promotes Trophoblast Cell Invasion and Migration via Enhancing STAT3-MMP-2/9 Axis Activity. Oncotarget 2017, 8, 115190. [Google Scholar] [CrossRef]
- Aruga, J.; Millen, K.J. ZIC1 Function in Normal Cerebellar Development and Human Developmental Pathology. Adv. Exp. Med. Biol. 2018, 1046, 249–268. [Google Scholar] [CrossRef]
- Aruga, J.; Nozaki, Y.; Hatayama, M.; Odaka, Y.S.; Yokota, N. Expression of ZIC Family Genes in Meningiomas and Other Brain Tumors. BMC Cancer 2010, 10, 79. [Google Scholar] [CrossRef]
- Aruga, J.; Inoue, T.; Hoshino, J.; Mikoshiba, K. Zic2 Controls Cerebellar Development in Cooperation with Zic1. J. Neurosci. 2002, 22, 218–225. [Google Scholar] [CrossRef]
- Cho, H.J.; Park, J.H.; Nam, J.H.; Chang, Y.C.; Park, B.; Hoe, H.S. Ascochlorin Suppresses MMP-2-Mediated Migration and Invasion by Targeting FAK and JAK-STAT Signaling Cascades. J. Cell. Biochem. 2018, 119, 300–313. [Google Scholar] [CrossRef]
- Lopez, V.; Keen, C.L.; Lanoue, L. Prenatal Zinc Deficiency: Influence on Heart Morphology and Distribution of Key Heart Proteins in a Rat Model. Biol. Trace Elem. Res. 2008, 122, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zheng, Y.; Li, Y.; Shen, Z.; Tao, L.; Dou, X.; Qian, J.; Shen, H. Psychological Stress Induced Zinc Accumulation and Up-Regulation of ZIP14 and Metallothionein in Rat Liver. BMC Gastroenterol. 2014, 14, 32. [Google Scholar] [CrossRef]
- Bennetts, H.W.; Chapman, F.E. Copper Deficiency in Sheep in Western Australia: A Preliminary Account of the Ætiology of Enzootic Ataxia of Lambs and an Anæmia of Ewes. Aust. Vet. J. 1937, 13, 138–149. [Google Scholar] [CrossRef]
- Harvey, K.M.; Cooke, R.F.; Colombo, E.A.; Rett, B.; de Sousa, O.A.; Harvey, L.M.; Russell, J.R.; Pohler, K.G.; Brandão, A.P. Supplementing Organic-Complexed or Inorganic Co, Cu, Mn, and Zn to Beef Cows during Gestation: Physiological and Productive Response of Cows and Their Offspring until Weaning. J. Anim. Sci. 2021, 99, skab095. [Google Scholar] [CrossRef] [PubMed]
- Gould, L.; Kendall, N.R. Role of the Rumen in Copper and Thiomolybdate Absorption. Nutr. Res. Rev. 2011, 24, 176. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.F.; Williams, R.B. Copper Concentration and Cytochrome-Oxidase and Ribonuclease Activities in the Brains of Copper-Deficient Lambs. Biochem. J. 1962, 85, 629–632. [Google Scholar] [CrossRef]
- Williams, J.R.; Trias, E.; Beilby, P.R.; Lopez, N.I.; Labut, E.M.; Bradford, C.S.; Roberts, B.R.; McAllum, E.J.; Crouch, P.J.; Rhoads, T.W.; et al. Copper Delivery to the CNS by CuATSM Effectively Treats Motor Neuron Disease in SODG93A Mice Co-Expressing the Copper-Chaperone-for-SOD. Neurobiol. Dis. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Choi, J.; Rees, H.D.; Weintraub, S.T.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative Modifications and Aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases. J. Biol. Chem. 2005, 280, 11648–11655. [Google Scholar] [CrossRef]
- Lei, X.G.; Combs, G.F.; Sunde, R.A.; Caton, J.S.; Arthington, J.D.; Vatamaniuk, M.Z. Dietary Selenium Across Species. Annu. Rev. Nutr. 2022, 42, 337–375. [Google Scholar] [CrossRef] [PubMed]
- Diniz, W.J.S.; Bobe, G.; Ward, A.K.; Hall, J.A.; Klopfenstein, J.J.; Gultekin, Y.; Davis, T.Z. Supranutritional Maternal Organic Selenium Supplementation during Different Trimesters of Pregnancy Affects the Muscle Gene Transcriptome of Newborn Beef Calves in a Time-Dependent Manner. Genes 2021, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Qazi, I.H.; Angel, C.; Yang, H.; Pan, B.; Zoidis, E.; Zeng, C.J.; Han, H.; Zhou, G. bin Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018, 23, 3053. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, M.L.; Nogales, F.; Romero-Herrera, I.; Carreras, O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021, 13, 2085. [Google Scholar] [CrossRef]
- Ojeda, M.L.; Carreras, O.; Díaz-Castro, J.; Murillo, M.L.; Nogales, F. High- and Low- Selenium Diets Affect Endocrine Energy Balance during Early Programming. Toxicol. Appl. Pharmacol. 2019, 382, 114744. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.R.; Nicol, F.; Hutchinson, A.R.; Beckett, G.J. The Effects of Selenium Depletion and Repletion on the Metabolism of Thyroid Hormones in the Rat. J. Inorg. Biochem. 1990, 39, 101–108. [Google Scholar] [CrossRef]
- Ward, M.A.; Neville, T.L.; Reed, J.J.; Taylor, J.B.; Hallford, D.M.; Soto-Navarro, S.A.; Vonnahme, K.A.; Redmer, D.A.; Reynolds, L.P.; Caton, J.S. Effects of Selenium Supply and Dietary Restriction on Maternal and Fetal Metabolic Hormones in Pregnant Ewe Lambs. J. Anim. Sci. 2008, 86, 1254–1262. [Google Scholar] [CrossRef]
- Kang, D.; Lee, J.; Wu, C.; Guo, X.; Lee, B.J.; Chun, J.S.; Kim, J.H. The Role of Selenium Metabolism and Selenoproteins in Cartilage Homeostasis and Arthropathies. Exp. Mol. Med. 2020, 52, 1198–1208. [Google Scholar] [CrossRef]
- Pappas, A.C.; Zoidis, E.; Chadio, S.E. Maternal Selenium and Developmental Programming. Antioxidants 2019, 8, 145. [Google Scholar] [CrossRef]
- Arthur, J.R.; Beckett, G.J.; Mitchell, J.H.; Arthur, J. The Interactions between Selenium and Iodine Deficiencies in Man and Animals. Nutr. Res. Rev. 1999, 12, 55–73. [Google Scholar] [CrossRef]
- Abuid, J.; Stinson, D.A.; Larsen, P.R. Serum Triiodothyronine and Thyroxine in the Neonate and the Acute Increases in These Hormones Following Delivery. J. Clin. Investig. 1973, 52, 1195–1199. [Google Scholar] [CrossRef]
- Dellavalle, A.; Maroli, G.; Covarello, D.; Azzoni, E.; Innocenzi, A.; Perani, L.; Antonini, S.; Sambasivan, R.; Brunelli, S.; Tajbakhsh, S.; et al. Pericytes Resident in Postnatal Skeletal Muscle Differentiate into Muscle Fibres and Generate Satellite Cells. Nat. Commun. 2011, 2, 499. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal Programming of Skeletal Muscle Development in Ruminant Animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of Thyroid Hormone Action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Yu, F.; Göthe, S.; Wikström, L.; Forrest, D.; Vennström, B.; Larsson, L. Effects of Thyroid Hormone Receptor Gene Disruption on Myosin Isoform Expression in Mouse Skeletal Muscles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1545–R1554. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Leonard, J.L.; Davis, P.J. Molecular Aspects of Thyroid Hormone Actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Hiroi, Y.; Kim, H.H.; Ying, H.; Furuya, F.; Huang, Z.; Simoncini, T.; Noma, K.; Ueki, K.; Nguyen, N.H.; Scanlan, T.S.; et al. Rapid Nongenomic Actions of Thyroid Hormone. Proc. Natl. Acad. Sci. USA 2006, 103, 14104–14109. [Google Scholar] [CrossRef]
- Tomanek, R.J.; Zimmerman, M.B.; Suvarna, P.R.; Morkin, E.; Pennock, G.D.; Goldman, S. A Thyroid Hormone Analog Stimulates Angiogenesis in the Post-Infarcted Rat Heart. J. Mol. Cell. Cardiol. 1998, 30, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Köhrle, J. The Impact of Iron and Selenium Deficiencies on Iodine and Thyroid Metabolism: Biochemistry and Relevance to Public Health. Thyroid 2002, 12, 867–878. [Google Scholar] [CrossRef]
- Goyens, P.; Golstein, J.; Nsombola, B.; Vis, H.; Dumont, J.E. Selenium Deficiency as a Possible Factor in the Pathogenesis of Myxoedematous Endemic Cretinism. Eur. J. Endocrinol. 1987, 114, 497–502. [Google Scholar] [CrossRef]
- Maxwell, C.; Volpe, S.L. Effect of Zinc Supplementation on Thyroid Hormone Function. Ann. Nutr. Metab. 2007, 51, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Hess, S.Y.; Zimmermann, M.B.; Arnold, M.; Langhans, W.; Hurrell, R.F. Iron Deficiency Anemia Reduces Thyroid Peroxidase Activity in Rats. J. Nutr. 2002, 132, 1951–1955. [Google Scholar] [CrossRef] [PubMed]
- Vinayagamoorthi, R.; Dhiman, P.; Kollipaka, R.; Sabita, P.; Hemavathy, V. Association of Hypothyroidism with Low Serum Ferritin Levels and Iron-Deficiency Anemia During the First Trimester of Pregnancy. Cureus 2022, 14, e28307. [Google Scholar] [CrossRef]
- Kovacs, C.S.; Ho-Pao, C.L.; Hunzelman, J.L.; Lanske, B.; Fox, J.; Seidman, J.G.; Seidman, C.E.; Kronenberg, H.M. Regulation of Murine Fetal-Placental Calcium Metabolism by the Calcium-Sensing Receptor. J. Clin. Investig. 1998, 101, 2812–2820. [Google Scholar] [CrossRef]
- Lofrese, J.J.; Basit, H.; Lappin, S.L. Physiology, Parathyroid; StatPearls: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef]
- Malucelli, E.; Guidetti, M.; Orsola-Malpighi, P.S.; Farruggia, G.; Pinna, A.D. The Complex Relationship between Magnesium and Serum Parathyroid Hormone: A Study in Patients with Chronic Intestinal Failure I Go MILS-Italian Group of Minimally Invasive Liver Surgery View Project Liver Transplantation View Project; John Libbey Eurotext Limited: Arcueil, France, 2009. [Google Scholar] [CrossRef]
- White, A.D.; Peña, K.A.; Clark, L.J.; Maria, C.S.; Liu, S.; Jean-Alphonse, F.G.; Lee, J.Y.; Lei, S.; Cheng, Z.; Tu, C.-L.; et al. Spatial Bias in CAMP Generation Determines Biological Responses to PTH Type 1 Receptor Activation. Sci. Signal. 2021, 14, eabc5944. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G.; Corbetta, S. Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. Int. J. Mol. Sci. 2020, 21, 5388. [Google Scholar] [CrossRef]
- Khan, A.A.; Clarke, B.; Rejnmark, L.; Brandi, M.L. Management of Endocrine Disease: Hypoparathyroidism in Pregnancy: Review and Evidence-Based Recommendations for Management. Eur. J. Endocrinol. 2019, 180, R37–R44. [Google Scholar] [CrossRef]
- Li, P.; Chang, X.; Fan, X.; Fan, C.; Tang, T.; Wang, R.; Qi, K. Dietary Calcium Status during Maternal Pregnancy and Lactation Affects Lipid Metabolism in Mouse Offspring. Sci. Rep. 2018, 8, 16542. [Google Scholar] [CrossRef]
- Ellinger, I. The Calcium-Sensing Receptor and the Reproductive System. Front. Physiol. 2016, 7, 371. [Google Scholar] [CrossRef]
- McCarthy, K.L.; Ana, A.C.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation. Animals 2022, 12, 1925. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.C.B.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers I: Effects on Dam Hormonal and Metabolic Status, Fetal Tissue and Organ Mass, and Concentration of Glucose and Fructose in Fetal Fluids at d 83 of Gestation. Animals 2022, 12, 1757. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Reynolds, L.P.; Borowicz, P.P.; Ward, A.K.; Sedivec, K.K.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; et al. Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes. Genes 2021, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Diniz, W.J.S.; Ward, A.K.; Mccarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Reynolds, L.P.; Borowicz, P.P.; Sedivec, K.K.; Kirsch, J.D.; Dorsam, S.T.; et al. Periconceptual Maternal Nutrition Affects Fetal Liver Programming of Energy- and Lipid-Related Genes. Animals 2023, 13, 600. [Google Scholar] [CrossRef]
- Anagnostis, P.; Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. The Pathogenetic Role of Cortisol in the Metabolic Syndrome: A Hypothesis. J. Clin. Endocrinol. Metab. 2009, 94, 2692–2701. [Google Scholar] [CrossRef] [PubMed]
- Takaya, J.; Iharada, A.; Okihana, H.; Kaneko, K. Magnesium Deficiency in Pregnant Rats Alters Methylation of Specific Cytosines in the Hepatic Hydroxysteroid Dehydrogenase-2 Promoter of the Offspring View Supplementary Material. Epigenetics 2011, 6, 573–578. [Google Scholar] [CrossRef]
- Tran, P.V.; Kennedy, B.C.; Lien, Y.C.; Simmons, R.A.; Georgieff, M.K. Fetal Iron Deficiency Induces Chromatin Remodeling at the Bdnf Locus in Adult Rat Hippocampus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R276–R282. [Google Scholar] [CrossRef]
- Lien, Y.C.; Condon, D.E.; Georgieff, M.K.; Simmons, R.A.; Tran, P.V. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients 2019, 11, 1191. [Google Scholar] [CrossRef]
- Schachtschneider, K.M.; Liu, Y.; Rund, L.A.; Madsen, O.; Johnson, R.W.; Groenen, M.A.M.; Schook, L.B. Impact of Neonatal Iron Deficiency on Hippocampal DNA Methylation and Gene Transcription in a Porcine Biomedical Model of Cognitive Development. BMC Genom. 2016, 17, 856. [Google Scholar] [CrossRef]
- Kurita, H.; Ohsako, S.; Hashimoto, S.-I.; Yoshinaga, J.; Tohyama, C. Prenatal Zinc Deficiency-Dependent Epigenetic Alterations of Mouse Metallothionein-2 Gene. J. Nutr. Biochem. 2013, 24, 256–266. [Google Scholar] [CrossRef]
- Wischhusen, P.; Saito, T.; Heraud, C.; Kaushik, S.J.; Fauconneau, B.; Prabhu, P.A.J.; Fontagné-Dicharry, S.; Skjӕrven, K.H. Parental Selenium Nutrition Affects the One-Carbon Metabolism and the Hepatic DNA Methylation Pattern of Rainbow Trout (Oncorhynchus Mykiss) in the Progeny. Life 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.; Everson, T.M.; Punshon, T.; Jackson, B.P.; Hao, K.; Lambertini, L.; Chen, J.; Karagas, M.R.; Marsit, C.J. Copper Associates with Differential Methylation in Placentae from Two US Birth Cohorts. Epigenetics 2020, 15, 215. [Google Scholar] [CrossRef] [PubMed]
- Espart, A.; Artime, S.; Tort-Nasarre, G.; Yara-Varón, E. Cadmium Exposure during Pregnancy and Lactation: Materno-Fetal and Newborn Repercussions of Cd(Ii), and Cd–Metallothionein Complexes. Metallomics 2018, 10, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Sekovanić, A.; Jurasović, J.; Piasek, M. Metallothionein 2A Gene Polymorphisms in Relation to Diseases and Trace Element Levels in Humans. Arch. Ind. Hyg. Toxicol. 2020, 71, 27. [Google Scholar] [CrossRef]
- Zheng, D.; Feeney, G.P.; Kille, P.; Hogstrand, C. Regulation of ZIP and ZnT Zinc Transporters in Zebrafish Gill: Zinc Repression of ZIP10 Transcription by an Intronic MRE Cluster. Physiol. Genom. 2008, 34, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, S.; Tennant, J.; Tandy, S.; Williams, M.; Singh Srai, S.K.; Sharp, P. Zinc Regulates the Function and Expression of the Iron Transporters DMT1 and IREG1 in Human Intestinal Caco-2 Cells. FEBS Lett. 2001, 507, 137–141. [Google Scholar] [CrossRef]
- Davis, C.D.; Uthus, E.O.; Finley, J.W. Dietary Selenium and Arsenic Affect DNA Methylation In Vitro in Caco-2 Cells and In Vivo in Rat Liver and Colon. J. Nutr. 2000, 130, 2903–2909. [Google Scholar] [CrossRef]
- Uthus, E.O.; Ross, S.A.; Davis, C.D. Differential Effects of Dietary Selenium (Se) and Folate on Methyl Metabolism in Liver and Colon of Rats. Biol. Trace Elem. Res. 2006, 109, 201–214. [Google Scholar] [CrossRef]
- Davis, C.D.; Uthus, E.O. Dietary Selenite and Azadeoxycytidine Treatments Affect Dimethylhydrazine-Induced Aberrant Crypt Formation in Rat Colon and DNA Methylation in HT-29 Cells. J. Nutr. 2002, 132, 292–297. [Google Scholar] [CrossRef]
- Davis, C.D.; Uthus, E.O. Dietary Folate and Selenium Affect Dimethylhydrazine-Induced Aberrant Crypt Formation, Global DNA Methylation and One-Carbon Metabolism in Rats. J. Nutr. 2003, 133, 2907–2914. [Google Scholar] [CrossRef]
- Frazer, D.M.; Wilkins, S.J.; Becker, E.M.; Murphy, T.L.; Vulpe, C.D.; McKie, A.T.; Anderson, G.J. A Rapid Decrease in the Expression of DMT1 and Dcytb but Not Ireg1 or Hephaestin Explains the Mucosal Block Phenomenon of Iron Absorption. Gut 2003, 52, 340. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, V.; Aengenheister, L.; Tuchtenhagen, M.; Rinklebe, J.; Ebert, F.; Schwerdtle, T.; Buerki-Thurnherr, T.; Bornhorst, J. Differences and Interactions in Placental Manganese and Iron Transfer across an In Vitro Model of Human Villous Trophoblasts. Int. J. Mol. Sci. 2022, 23, 3296. [Google Scholar] [CrossRef]
- Arredondo, M.; Muñoz, P.; Mura, C.V.; Núñez, M.T. DMT1, a Physiologically Relevant Apical Cu1+ Transporter of Intestinal Cells. Am. J. Physiol. Cell. Physiol. 2003, 284, C1525–C1530. [Google Scholar] [CrossRef] [PubMed]
- Gruper, Y.; Bar, J.; Bacharach, E.; Ehrlich, R. Transferrin Receptor Co-Localizes and Interacts with the Hemochromatosis Factor (HFE) and the Divalent Metal Transporter-1 (DMT1) in Trophoblast Cells. J. Cell. Physiol. 2005, 204, 901–912. [Google Scholar] [CrossRef]
- Hardman, B.; Manuelpillai, U.; Wallace, E.M.; van de Waasenburg, S.; Cater, M.; Mercer, J.F.B.; Ackland, M.L. Expression and Localization of Menkes and Wilson Copper Transporting ATPases in Human Placenta. Placenta 2004, 25, 512–517. [Google Scholar] [CrossRef] [PubMed]
- McArdle, H.J.; Andersen, H.S.; Jones, H.; Gambling, L. Copper and Iron Transport Across the Placenta: Regulation and Interactions. J. Neuroendocrinol. 2008, 20, 427–431. [Google Scholar] [CrossRef]
- Takaya, J. Calcium-Deficiency during Pregnancy Affects Insulin Resistance in Offspring. Int. J. Mol. Sci. 2021, 22, 7008. [Google Scholar] [CrossRef]
- Takaya, J.; Yamanouchi, S.; Tanabe, Y.; Kaneko, K. A Calcium-Deficient Diet in Rat Dams during Gestation Decreases HOMA-Β% in 3 Generations of Offspring. J. Nutrigenet. Nutr. 2017, 9, 276–286. [Google Scholar] [CrossRef]
- Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Li, X.; Bazer, F.W. Select Nutrients in the Ovine Uterine Lumen. I. Amino Acids, Glucose, and Ions in Uterine Lumenal Flushings of Cyclic and Pregnant Ewes. Biol. Reprod. 2009, 80, 86–93. [Google Scholar] [CrossRef]
- McArdle, H.J.; Douglas, A.J.; Morgan, E.H. Transferrin Binding by Microvillar Vesicles Isolated from Rat Placenta. Placenta 1984, 5, 131–138. [Google Scholar] [CrossRef]
- Srai, S.K.S.; Bomford, A.; McArdle, H.J. Iron Transport across Cell Membranes: Molecular Understanding of Duodenal and Placental Iron Uptake. Best Pract. Res. Clin. Haematol. 2002, 15, 243–259. [Google Scholar] [CrossRef]
- Lee, J.; Prohaska, J.R.; Thiele, D.J. Essential Role for Mammalian Copper Transporter Ctr1 in Copper Homeostasis and Embryonic Development. Proc. Natl. Acad. Sci. USA 2001, 98, 6842–6847. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Archibeque, S.L.; Engle, T.E. Characterization and Identification of Hepatic MRNA Related to Copper Metabolism and Homeostasis in Cattle. Biol. Trace Elem. Res. 2009, 129, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Khayat, S.; Fanaei, H.; Ghanbarzehi, A. Minerals in Pregnancy and Lactation: A Review Article. J. Clin. Diagn. Res. 2017, 11, QE01. [Google Scholar] [CrossRef]
- Phillips, N.L.H.; Roth, T.L. Animal Models and Their Contribution to Our Understanding of the Relationship Between Environments, Epigenetic Modifications, and Behavior. Genes 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Vonnahme, K.A. Livestock as Models for Developmental Programming. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef]
- Armitage, J.A.; Khan, I.Y.; Taylor, P.D.; Nathanielsz, P.W.; Poston, L. Developmental Programming of the Metabolic Syndrome by Maternal Nutritional Imbalance: How Strong Is the Evidence from Experimental Models in Mammals? J. Physiol. 2004, 561, 355–377. [Google Scholar] [CrossRef]
- Fitz-James, M.H.; Cavalli, G. Molecular Mechanisms of Transgenerational Epigenetic Inheritance. Nat. Rev. Genet. 2022, 23, 325–341. [Google Scholar] [CrossRef]
Mineral Requirements of Dairy Cattle a | Mineral Requirements of Beef Cattle b | Maximum Tolerable Level (MTL) c | |||||
---|---|---|---|---|---|---|---|
Mineral | Lactating Cow | Dry Pregnant Cow | Growing Heifer | Growing and Finishing Cow | Gestating Cow | Early Lactating Cow | |
Calcium, % d | 0.59 | 0.35 | 0.45 | 0.6 | 0.25 | 0.3 | 1.5 |
Phosphorous, % | 0.36 | 0.2 | 0.21 | 0.22 | 0.17 | 0.21 | 0.7 |
Magnesium, % | 0.17 | 0.14 | 0.12 | 0.1 | 0.12 | 0.20 | 0.40 |
Potassium, % | 1.02 | 0.66 | 0.56 | 0.6 | 0.6 | 0.7 | 2 |
Sodium, % | 0.22 | 0.17 | 0.16 | 0.06–0.08 | 0.06–0.08 | 0.1 | 3 |
Sulfur, % | 0.2 | 0.2 | 0.2 | 0.15 | 0.15 | 0.15 | 0.4 |
Cobalt, mg/kg d | 0.2 | 0.2 | 0.2 | 0.15 | 0.15 | 0.15 | 25 |
Copper, mg/kg | 9 | 18.5 | 15.75 | 10 | 10 | 10 | 40 |
Iodine, mg/kg | 0.44 | 0.53 | 0.55 | 0.5 | 0.5 | 0.5 | 50 |
Iron, mg/kg | 17.6 | 14 | 32.5 | 50 | 50 | 50 | 500 |
Manganese, mg/kg | 28 | 40.5 | 41.25 | 20 | 40 | 40 | 2000 |
Selenium, mg/kg | 0.3 | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 5 |
Zinc, mg/kg | 60.8 | 31 | 36.5 | 30 | 30 | 30 | 500 |
Mineral | Model | Epigenome Regulation | Organ | Effect | Reference |
---|---|---|---|---|---|
Ca | Rat | Hypomethylation of CpG dinucleotide in promotor of hydroxysteroid 11-beta dehydrogenase 1 (Hsd11b1) | Liver | Induction of insulin resistance in adult life | [118] |
Mg | Rat (Mg deficient model) | Hypermethylation of CpG dinucleotide in promotor of 11β-hydroxysteroid dehydrogenase-2 (Hsd11b2) | Liver | Alters neonatal hepatic glucocorticoid metabolism | [119] |
Fe | Rat (Fe deficient model) | Hypomethylation at CpG site and reduction in histone H4 acetylation in promoter of brain-derived neurotrophic factor (BDNF) | Brain (hippocampus) | Crucial for regulation of hippocampal plasticity and development of neural circuit | [120] |
Fe | Rat (Fe deficient model) | Hypermethylation in 63 genes and hypomethylation in 45 genes | Brain (hippocampus) | Neural function dysregulation and alterations in cell-to-cell signal transduction | [121] |
Fe | Domestic pig (Fe deficient model) | Twelve differentially methylated cytosines regulating nine differentially expressed genes were identified | Brain (hippocampus) | Associated genes were found to be involved in angiogenesis and neurodevelopment | [122] |
Zn | Mouse (Zn deficient model) | Elevated expression of metallothionine-2 (MT2) mRNA response to histone modifications in metal-responsive elements associated with the promotor region of MT2 | Liver | Epigenetic memory of zinc deficiency in early development may persist to adulthood, impacting availability of essential trace minerals | [123] |
Se | Rainbow trout (Se deficient model) | Selenium availability affected the differentially methylated cytosines of more than 6500 differentially methylated genes | Liver | The 6500 differentially methylated genes were found to be associated with immune modulations and neural signaling | [124] |
Cu | Humans | Copper levels positively coincided with DNA methylation at CpG island and transcription site of Zinc Finger Protein 197 (ZNF197) | Placenta | Can alter placentation and growth in postnatal life by impairing growth hormone secretion | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anas, M.; Diniz, W.J.S.; Menezes, A.C.B.; Reynolds, L.P.; Caton, J.S.; Dahlen, C.R.; Ward, A.K. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023, 13, 593. https://doi.org/10.3390/metabo13050593
Anas M, Diniz WJS, Menezes ACB, Reynolds LP, Caton JS, Dahlen CR, Ward AK. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites. 2023; 13(5):593. https://doi.org/10.3390/metabo13050593
Chicago/Turabian StyleAnas, Muhammad, Wellison J. S. Diniz, Ana Clara B. Menezes, Lawrence P. Reynolds, Joel S. Caton, Carl R. Dahlen, and Alison K. Ward. 2023. "Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review" Metabolites 13, no. 5: 593. https://doi.org/10.3390/metabo13050593
APA StyleAnas, M., Diniz, W. J. S., Menezes, A. C. B., Reynolds, L. P., Caton, J. S., Dahlen, C. R., & Ward, A. K. (2023). Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites, 13(5), 593. https://doi.org/10.3390/metabo13050593