Microstructural, Electrochemical, Mechanical, and Biocompatibility Characterization of ReN Thin Films Synthesized by DC Sputtering on Ti6Al4V Substrates
"> Figure 1
<p>XRD diffraction patterns for DC sputter-deposited ReN thin films: (<b>a</b>) 120 mTorr; (<b>b</b>) 140 mTorr; (<b>c</b>) 160 mTorr; and (<b>d</b>) 180 mTorr.</p> "> Figure 2
<p>SEM images of rhenium coatings deposited at various nitrogen flows: (<b>a</b>) 180 mTorr, (<b>b</b>) 160 mTorr, (<b>c</b>) 140 mTorr, and (<b>d</b>) 120 mTorr.</p> "> Figure 3
<p>AFM images used for the quantitative evaluation of the surface morphology of coatings deposited at different nitrogen pressures.</p> "> Figure 3 Cont.
<p>AFM images used for the quantitative evaluation of the surface morphology of coatings deposited at different nitrogen pressures.</p> "> Figure 4
<p>Potentiodynamic polarization curves for the uncoated and ReN-coated Ti6Al4V substrate at different nitrogen flows.</p> "> Figure 5
<p>Nanoindentation test results for ReN films as a function of nitrogen variation.</p> "> Figure 6
<p>Graph of the elastic modulus and hardness of ReN coatings as a function of the nitrogen flow used in the synthesis.</p> "> Figure 7
<p>Cell viability results on Ti6Al4V substrates and ReN coatings as a function of nitrogen flow in the synthesis process.</p> "> Figure 8
<p>SEM micrographs showing cell growth. (<b>a</b>) Ti6Al4V substrate, (<b>b</b>) ReN coating at 120 mTorr, (<b>c</b>) ReN coating at 140 mTorr, (<b>d</b>) ReN coating at 160 mTorr, and (<b>e</b>) ReN coating at 180 mTorr with cells.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Wei, C.; Deng, L.; Wang, P.; Zhong, W.; Huang, W. A review of non-biodegradable alloys implantation induced inflammatory and immune cell responses. J. Alloys Compd. 2024, 977, 173086. [Google Scholar] [CrossRef]
- Takakubo, Y.; Berce, A.; Trebše, R.; Tamaki, Y.; Milošev, I.; Al-Samadi, A.; Tiainen, V.M.; Konttinen, Y.T. Wear and Corrosion in the Loosening of Total Joint Replacements (TJRs); Yan, Y., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 74–110. [Google Scholar]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–Gel Based Materials for Biomedical Applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Lämsä, T.; Jin, H.; Mikkonen, J.; Laukkarinen, J.; Sand, J.; Nordback, I. Biocompatibility of a New Bioabsorbable Radiopaque Stent Material (BaSO4 Containing Poly-L,D-Lactide) in the Rat Pancreas. Pancreatology 2006, 6, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Ronoh, K.; Mwema, F.; Dabees, S.; Sobola, D. Advances in Sustainable Grinding of Different Types of Titanium Biomaterials for Medical Applications: A Review. Biomed. Eng. Adv. 2022, 4, 100047. [Google Scholar] [CrossRef]
- Wei, G.; Tan, M.; Attarilar, S.; Li, J.; Uglov, V.V.; Wang, B.; Liu, J.; Lu, L.; Wang, L. An Overview of Surface Modification, a Way Toward Fabrication of Nascent Biomedical Ti–6Al–4V Alloys. J. Mater. Res. Technol. 2023, 24, 5896–5921. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kermanpur, A.; Kharaziha, M.; Bagherifard, S. Engineering of Multilayered Coating on Additively Manufactured Ti-6Al-4V Porous Implants to Promote Tribological and Fatigue Performances. Surf. Coat. Technol. 2024, 494 Pt 2, 131400. [Google Scholar] [CrossRef]
- Guo, L.; Naghavi, S.A.; Wang, Z.; Varma, S.N.; Han, Z.; Yao, Z.; Wang, L.; Wang, L.; Liu, C. On the Design Evolution of Hip Implants: A Review. Mater. Des. 2022, 216, 110552. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving Biocompatibility for Next Generation of Metallic Implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef]
- Ziaie, B.; Velay, X.; Saleem, W. Developing Porous Hip Implants Implementing Topology Optimization Based on the Bone Remodelling Model and Fatigue Failure. J. Mech. Behav. Biomed. Mater. 2025, 163, 106864. [Google Scholar] [CrossRef]
- Tamayo, J.A.; Riascos, M.; Vargas, C.A.; Baena, L.M. Additive Manufacturing of Ti6Al4V Alloy via Electron Beam Melting for the Development of Implants for the Biomedical Industry. Heliyon 2021, 7, e06892. [Google Scholar] [CrossRef]
- Orozco-Hernández, G.; Mosquera-Diaz, S.V.; Ramírez-Monroy, J.V.; Aperador, W.; Corredor-Figueroa, A.P.; Pineda-Triana, Y. Surface Engineering of Ti6Al4V: Impact of Rhenium–Carbon Coatings with Molybdenum Anchors on Biocompatibility and Corrosion Behavior. Metals 2024, 14, 1144. [Google Scholar] [CrossRef]
- Mok, J.M.; Poelstra, K.; Ammar, K.; McGirt, M.; Cormier, J.; Hart, R.; Bauman, J.; Cowart, P.; Sheth, I.; Singh, P.; et al. Characterization of ion release from a novel biomaterial, Molybdenum-47.5Rhenium, in physiologic environments. Spine J. 2023, 23, 900–911. [Google Scholar] [CrossRef]
- Fedorayev, I.I.; Kerimov, E.Y.; Leonov, A.V.; Philippova, S.E.; Maksimov, S.V.; Kalmykov, K.V.; Slyusarenko, E.M. Influence of rhenium on the hardness, structure and phase composition of the cobalt-niobium and cobalt-tantalum alloys. Int. J. Refract. Met. Hard Mater. 2024, 121, 106630. [Google Scholar] [CrossRef]
- Tahal, D.; Madhavan, K.; Chieng, L.O.; Ghobrial, G.M.; Wang, M.Y. Metals in Spine. World Neurosurg. 2017, 100, 619–627. [Google Scholar] [CrossRef]
- Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and Osteogenesis of Refractory Metal Implants, Titanium, Hafnium, Niobium, Tantalum and Rhenium. Biomaterials 2001, 22, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Veerakumar, P.; Pandiyan, R.; Chen, S.-M.; Thanasekaran, P.; Saranya, K. Recent Trends and Perspectives in Rhenium-Based Nanomaterials for Sustainable Applications. Curr. Catal. Rev. 2025, 527, 216382. [Google Scholar] [CrossRef]
- Moherane, L.; Alexander, O.T.; Schutte-Smith, M.; Kroon, R.E.; Mokolokolo, P.P.; Biswas, S.; Prince, S.; Visser, H.G.; Manicum, A.-L.E. Polypyridyl Coordinated Rhenium(I) Tricarbonyl Complexes as Model Devices for Cancer Diagnosis and Treatment. Polyhedron 2022, 228, 116178. [Google Scholar] [CrossRef]
- Sharma, A.; Vaibhavi, N.; Kar, B.; Das, U.; Paira, P. Target-Specific Mononuclear and Binuclear Rhenium(I) Tricarbonyl Complexes as Upcoming Anticancer Drugs. RSC Adv. 2022, 12, 20264–20295. [Google Scholar] [CrossRef]
- Arroyave, M.; Ruiz, C.; Echeverri, P.; Jaoul, C.; Grisales, M.; Bejarano, G. Microstructure, chemical composition and mechanical properties of rhenium nitride hard coating deposited by reactive magnetron sputtering. Int. J. Refract. Met. Hard Mater. 2023, 110, 106026. [Google Scholar] [CrossRef]
- Soto, G.; Tiznado, H.; Díaz, J.A.; Samano, E.C.; Reyes-Serrato, A. Evaluation of rhenium carbide as a prospective material for hard coating. Thin Solid Films 2011, 519, 3236–3241. [Google Scholar] [CrossRef]
- Lei, H.R.; Zhu, J.; Hao, Y.J.; Zhang, L.; Zhao, Y.X.; Zhan, G.F. Pressure-induced structural phase transition, elastic and thermodynamic properties of ReC under high pressure. Solid State Sci. 2015, 48, 49–55. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Kavitha, M.; Priyanga, G.S.; Rajeswarapalanichamy, R.; Iyakutti, K. Structural, electronic, mechanical and superconducting properties of ReC and TcC. Int. J. Refract. Met. Hard Mater. 2015, 52, 219–228. [Google Scholar] [CrossRef]
- Lei, H.R.; Zhu, J.; Hao, Y.J.; Zhang, L.; Yu, B.R.; Chen, L.Q.; Zou, Y.C. Theoretical study of electronic structure, phase transition, elastic, and thermodynamic properties of ReN. Phys. B Condens. Matter. 2015, 458, 124–131. [Google Scholar] [CrossRef]
- Guo, Y.-Y.; Cheng, M.-Q.; Chen, D.-S.; Xue, X.-B.; Zhang, X.-L. In Vitro Corrosion Resistance and Cytotoxicity of Novel TiNbTaZr Alloy. Trans. Nonferrous Met. Soc. China 2012, 22 (Suppl. S1), s175–s180. [Google Scholar] [CrossRef]
- Soto, G.; Tiznado, H.; Reyes, A.; de la Cruz, W. First principles calculations of interstitial and lamellar rhenium nitrides. J. Alloys Compd. 2012, 514, 127–134. [Google Scholar] [CrossRef]
- Moreno-Armenta, M.G.; Diaz, J.; Martinez-Ruiz, A.; Soto, G. Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation. J. Phys. Chem. Solids 2007, 68, 1989–1994. [Google Scholar] [CrossRef]
- Soto, G.; Rosas, A.; Farias, M.H.; De la Cruz, W.; Diaz, J.A. Characterization of rhenium nitride films produced by reactive pulsed laser deposition. Mater. Charact. 2007, 58, 519–526. [Google Scholar] [CrossRef]
- Du, X.P.; Wang, Y.X.; Lo, V.C. Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations. Phys. Lett. A 2010, 374, 2569–2574. [Google Scholar] [CrossRef]
- Arroyave, M.; Bejarano, G.; David, J.; Hernández, J. Growth and characterization of Rhenium Nitride coatings produced by reactive magnetron sputtering. Thin Solid Films 2021, 733, 138809. [Google Scholar] [CrossRef]
- Bautista-Ruiz, J.; Aperador, W.; Caicedo, J.C. Production of Electroplated Rhenium Coatings Using Pulsating Currents. Rasayan J. Chem. 2021, 14, 728–734. [Google Scholar] [CrossRef]
- Hori, H.; Yoshimura, Y.; Otsu, T.; Kume, K.; Mitsumori, Y.; Kutsuna, S.; Koike, K. Efficient photochemical recovery of rhenium from aqueous solutions. Sep. Purif. Technol. 2015, 156, 242–248. [Google Scholar] [CrossRef]
- Mora-Sanchez, H.; Ramos, C.; Mohedano, M.; Torres, B.; Arrabal, R.; Matykina, E. Flash plasma electrolytic oxidation and electrochemical behaviour in physiological media of additive manufacturing Ti6Al4V alloy. Trans. Nonferrous Met. Soc. China 2024, 34, 1150–1166. [Google Scholar] [CrossRef]
- Muñoz, E.C.; Schrebler, R.S.; Orellana, M.A.; Córdova, R. Rhenium electrodeposition process onto p-Si(100) and electrochemical behaviour of the hydrogen evolution reaction onto p-Si/Re/0.1M H2SO4 interface. J. Electroanal. Chem. 2007, 611, 35–42. [Google Scholar] [CrossRef]
- Grisales, M.A.; Giraldo, F.; Echavarría, A.M.; Bolivar, F.J.; Bejarano, G. A novel ReN/TiAlN multilayer coating on M2 steel by magnetron sputtering: Development and electrochemical behavior. Surf. Coat. Technol. 2022, 448, 128883. [Google Scholar] [CrossRef]
- Yapontseva, Y.; Kublanovsky, V.; Maltseva, T.; Troshchenkov, Y.; Vyshnevskyi, O. Electrodeposition, composition and properties of cobalt–rhenium alloys coatings. Mater. Adv. 2023, 4, 3662–3670. [Google Scholar] [CrossRef]
- Durst, K.; Göken, M. Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Mater. Sci. Eng. A 2004, 387–389, 312–316. [Google Scholar] [CrossRef]
- Yazdi, R.; Ghasemi, H.M.; Abedini, M.; Wang, C.; Neville, A. Mechanism of tribofilm formation on Ti6Al4V oxygen diffusion layer in a simulated body fluid. J. Mech. Behav. Biomed. Mater. 2018, 77, 660–670. [Google Scholar] [CrossRef]
- Chung, R.J.; Ou, K.L.; Tseng, W.K.; Liu, H.L. Controlled release of BMP-2 by chitosan/γ-PGA polyelectrolyte multilayers coating on titanium alloy promotes osteogenic differentiation in rat bone marrow mesenchymal stem cells. Surf. Coat. Technol. 2016, 303, 283–288. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, H.; Gaur, N.; Patil, S.; Kumar, D.; Singh, N. Imparting increased corrosion passive and bio-active character to Al2O3 based ceramic coating on AZ91 alloy. Surf. Coat. Technol. 2020, 383, 125231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aperador, W.; Orozco-Hernández, G.; Aperador, J.; Bautista-Ruiz, J. Microstructural, Electrochemical, Mechanical, and Biocompatibility Characterization of ReN Thin Films Synthesized by DC Sputtering on Ti6Al4V Substrates. Metals 2025, 15, 272. https://doi.org/10.3390/met15030272
Aperador W, Orozco-Hernández G, Aperador J, Bautista-Ruiz J. Microstructural, Electrochemical, Mechanical, and Biocompatibility Characterization of ReN Thin Films Synthesized by DC Sputtering on Ti6Al4V Substrates. Metals. 2025; 15(3):272. https://doi.org/10.3390/met15030272
Chicago/Turabian StyleAperador, Willian, Giovany Orozco-Hernández, Jonnathan Aperador, and Jorge Bautista-Ruiz. 2025. "Microstructural, Electrochemical, Mechanical, and Biocompatibility Characterization of ReN Thin Films Synthesized by DC Sputtering on Ti6Al4V Substrates" Metals 15, no. 3: 272. https://doi.org/10.3390/met15030272
APA StyleAperador, W., Orozco-Hernández, G., Aperador, J., & Bautista-Ruiz, J. (2025). Microstructural, Electrochemical, Mechanical, and Biocompatibility Characterization of ReN Thin Films Synthesized by DC Sputtering on Ti6Al4V Substrates. Metals, 15(3), 272. https://doi.org/10.3390/met15030272