Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel
<p>Test steel phase diagram.</p> "> Figure 2
<p>The standard ODF map (ϕ<sub>2</sub> = 45°).</p> "> Figure 3
<p>Microstructure of hot rolled plate. (<b>a</b>) Rolling direction; (<b>b</b>) transverse direction.</p> "> Figure 4
<p>Microstructure of normalized plate. (<b>a</b>) Rolling direction; (<b>b</b>) transverse direction.</p> "> Figure 5
<p>Microstructure of cold-rolled sheet (Red circles represent the shear bands).</p> "> Figure 6
<p>Microstructure of decarburized nitriding sheet.</p> "> Figure 7
<p>Macrostructure of finished product.</p> "> Figure 8
<p>Texture and orientation line at ϕ<sub>2</sub> = 45° section of hot rolled plate. Microstructure texture: (<b>a</b>) surface layer; (<b>b</b>) 1/4 layer; (<b>c</b>) center layer orientation line; (<b>d</b>) {110}; (<b>e</b>) ϕ<sub>1</sub> = 90°; (<b>f</b>) α-fiber.</p> "> Figure 9
<p>Texture and orientation line at ϕ<sub>2</sub> = 45° section of normalized plate orientation: (<b>a</b>) Surface layer; (<b>b</b>) 1/4 layer; (<b>c</b>) 1/2 layer orientation linel (<b>d</b>) {110}; (<b>e</b>) λ-fiber; (<b>f</b>) α-fiber.</p> "> Figure 10
<p>Texture at ϕ<sub>2</sub> = 45° section of cold sheet. (<b>a</b>) ODF map; (<b>b</b>) grain orientation map; (<b>c</b>) α-fiber line.</p> "> Figure 11
<p>Textures of decarburized nitriding sheet and finished product: (<b>a</b>) decarburized nitriding sheet; (<b>b</b>) finished product.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Microstructure Evolution
3.2. Texture Evolution
3.3. Discussion
4. Conclusions
- (1)
- The hot-rolled plate of the experimental steel displays a gradient both in the microstructure and texture in the thickness direction. The surface layer is composed of recrystallized grains, the center layer is elongated fibrous tissue, and the quarter of thickness layer is a mixed structure. The main texture from the surface to the center layer is as follows: ({112}<111> copper texture + {110}<114> brass texture) → {441}<014> → {001}~{111}<110>.
- (2)
- The surface of the normalized plate is mainly the {110}<113> texture, the quarter of the thickness layer is mainly composed of diffuse α-fiber texture, and partial Goss texture. The center layer is characterized by a sharp α-fiber texture.
- (3)
- The cold-rolled plate is composed of fibrous tissue and a shear band of 22°~36° with the rolling direction. The texture of the cold-rolled sheet is typically sharp α-fiber.
- (4)
- The average grain size of the primary recrystallization is 26.4 μm, and the texture of the decarburized nitriding sheet is composed of sharp α* and weak γ-fibers.
- (5)
- The finished product has a sharp single Goss texture with an average grain size of 5.47 cm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inokuti, Y.; Maeda, C.; Ito, Y.; Shimanaka, H. Transmission Kossel Study of Origin of Goss Texture in Grain Oriented Silicon Steel. Isij Int. 2006, 23, 440–449. [Google Scholar] [CrossRef]
- Böttcher, A.; Lücke, K. Influence of Subsurface Layers on Texture and Microstructure Development in RGO Electrical Steel. Acta Metall. Et. Mater. 1993, 41, 2503–2514. [Google Scholar] [CrossRef]
- Dorner, D.; Stefan, Z.; Dierk, R. Retention of the Goss Orientation between Microbands during Cold Rolling of an Fe3%Si Single Crystal. Acta Mater. 2007, 55, 2519–2530. [Google Scholar] [CrossRef]
- Yu, C.M.; Zhang, J.M.; Dang, B.; Zhang, Y. Grain boundary and texture evolution of a high magnetic grain-oriented silicon steel during rolling and heat treatment. Heat. Treat. Met. 2021, 46, 204–208. [Google Scholar]
- Fu, B.; Xiang, L.; Qiao, J.L.; Liu, J.; Chou, S.T. Evolution of Texture and Development of Goss Grains in High Permeability Grain Oriented Silicon Steel Produced by TSCR Process. Mater. Rep. 2022, 36, 177–184. [Google Scholar]
- Duan, Y.H.; Feng, Y.L.; Meng, R.R.; Li, J. Evolution of Microstructure and Texture in Hot Rolling and Normalization Process of Fe-3%Si-0.09% Nb Grain-oriented Silicon Steel. Hot Work. Technol. 2020, 49, 138–142. [Google Scholar]
- Wang, Y.P.; An, L.Z.; Song, H.Y.; Wang, G.D.; Liu, L.T. Dependence of Recrystallization Behavior on Initial Goss Orientation in Ultra-thin Grain-oriented Silicon Steels. J. Magn. Magn. Mater. 2020, 499, 166290. [Google Scholar] [CrossRef]
- Tang, S.Q.; Bao, S.Q.; Chen, J.H. Effect of cold rolling reduction on primary and secondary recrystallization of Hi-B steel. Heat Treat. Met. 2016, 41, 78–81. [Google Scholar]
- Yan, M.Q.; Qian, H.; Yang, P.; Qian, Q.W.; Jin, W.X. Analysis of Micro-texture during Secondary Recrystallization in a Hi-B Electrical Steel. J. Mater. Sci. Technol. 2011, 27, 1065–1071. [Google Scholar] [CrossRef]
- Fan, L.F.; Zhu, Y.X.; Yue, E.B.; He, J.Z.; Sun, L. Microstructure and texture evolution of ultra-thin high grade non-oriented silicon steel used in new energy vehicle. Mater. Res. Express 2022, 9, 096515. [Google Scholar] [CrossRef]
- Fan, L.F.; Zhu, T.N.; Gao, J.; Xiao, L.J.; Yue, E.B.; Li, H.B.; Chen, H.S. Coordinate regulation mechanism of primary recrystallization texture and microstructure of grain-oriented silicon steel. Metall. Res. Technol. 2024, 121, 510. [Google Scholar]
- Huang, B.; Zhou, T.; Zhang, Z.J. Influence of Hot Rolling Temperature on Magnetic Properties of High Temperature Hi-B Silicon Steel. J. Wuhan. Eng. Vocat. Tech. Coll. 2016, 28, 14–18. [Google Scholar]
- Mao, W.M.; Yang, P. Material Science Principles on Electrical Steels; Higher Education: Beijing, China, 2013. [Google Scholar]
- Li, H.; Feng, Y.L.; Qi, X.J. Study on microstructure and precipitates at different normalizing in Fe-3.15%Si low temperature oriented silicon steel. Acta. Metall. Sin. 2013, 49, 562–568. [Google Scholar] [CrossRef]
- Tang, G.; Zhao, G.; Bao, S.Q.; Wang, F.; Li, L.; Li, F.F. Effect of hot-rolled plate normalization process on structure and properties of annealed cold-rolled sheet of oriented silicon steel. Spec. Steel 2015, 36, 56–59. [Google Scholar]
- Huang, R.S.; Yu, C.B.; Bao, S.Q.; Chen, J.H.; Liu, Z.L.; Ma, L. Effect of normalizing process on the primary and secondary recrystallization of low temperature Hi-B steel. Shanghai Met. 2016, 38, 1–5. [Google Scholar]
- Park, J.T.; Szpunar, J.A. Evolution of Recrystallization Texture in Nonoriented Electrical Steels. Acta Mater. 2003, 51, 3037–3051. [Google Scholar] [CrossRef]
- Da Costa Paolinelli, S.; da Cunha, M.A.; Cota, A.B. The Influence of Shear Bands on Final Structure and Magnetic Properties of 3% Si Non-oriented Silicon Steel. J. Magn. Magn. Mater. 2008, 320, 641–644. [Google Scholar] [CrossRef]
- Kohsaku, U.; Hutchinson, W.B. Role of Shear Bands in Annealing Texture Formation in 3%Si-Fe {111}<112> Single Crystals. ISIJ Int. 2007, 29, 862–867. [Google Scholar]
- Reid, C.N. Deformation Geometry for Materials Scientists; Pergamon Press Ltd.: Oxford, UK, 1973. [Google Scholar]
- Zhang, Y.; Xia, Y.; Hao, D.; Wang, Y.; Fang, F.; Zhang, Y.; Zhang, J.C. Evolution of the Shear Band in Cold-Rolling of Strip-Cast Fe-1.3% Si Non-Oriented Silicon Steel. Materials 2021, 14, 775. [Google Scholar] [CrossRef]
- Wu, Z.H.; Hu, S.T.; Guo, Y.; Dai, F.Q.; Xiao, S.F.; Zhang, F.Q. Effects of annealing condition on decarburization of grain oriented silicon. Trans. Mater. Heat. Treat. 2017, 38, 91–97. [Google Scholar]
- Yang, J.X.; Yang, P.; Xu, G.; Guo, X.L.; Sun, L. Effect of primary recrystallization characteristics on secondary recrystallization of high permeability grain-oriented silicon steel with slab reheating at low temperature. Trans. Mater. Heat. Treat. 2017, 38, 103–107. [Google Scholar]
- Sun, H.Y.; Yu, C.B.; Bao, S.Q.; Wei, J.J.; Wang, F.; Tang, G. Research on Deformation and Primary Recrystallization Annealing of High Magnetic Induction Oriented Silicon Steel in CSP Process. Hot Work. Technol. 2015, 44, 19–22+29. [Google Scholar]
- Yang, J.X.; Liu, J.; Li, S.D.; Li, C.Y.; Wang, R.P. Influence of preliminary annealing temperature on primary recrystallization texture of high permeability grain-oriented silicon steel. Trans. Mater. Heat. Treat. 2013, 34, 114–117. [Google Scholar]
- Zhang, D.P.; Li, B.; Li, L.J. Effect of pulse magnetic field on primary recrystallization grain size of high magnetic induction oriented silicon steel. Heat. Treat. Met. 2017, 42, 34–37. [Google Scholar]
- Li, P.H.; Han, R.D.; Liu, J.X.; Cai, Y.B.; Huang, B. Comments oriented silicon steel with high magnetic induction features of the texture. In Proceedings of the Annual Meeting of China Electrical Steel Professionals QIRT 11, Xiamen, China, 9 December 2010. [Google Scholar]
- Zhang, Z.G.; Wang, T.Y.; Chen, H.N.; Xiao, T.; Tan, H.F. Study on Texture and Microstructure of Hot-rolled and Normalized Non-oriented Silicon Steel. Trans. Mater. Heat. Treat. 2021, 50, 74–76+81. [Google Scholar]
- Liu, D.F. Toughening and Plasticizing Mechanism of Rare-Earth Y Microalloyed 6.5%Si High Silica Steel and the Evolution of Hot Rolled and Warm Rolled Tissues and Textures. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2020. [Google Scholar]
- Yan, M.Q.; Qian, H.; Yang, P.; Song, H.J.; Shao, Y.Y.; Mao, W.M. Brass weaving behavior in electrical steel and its effect on Goss weaving, Acta. Metall. Sin. 2012, 48, 16–22. [Google Scholar] [CrossRef]
- Fan, L.F.; Jia, L.Y.; Zhu, R.; He, J.Z. Microstructure and Texture Evolution of Medium Temperature Grain-oriented Silicon Steel produced by Industrialization. Meta-Llurgical Res. Technol. 2019, 116, 604. [Google Scholar] [CrossRef]
- Liu, S.X. Grain Orientation and Precipitation Behavior of Inhibitors in Hi-B Steel CSP Hot-Rolled Sheets. Master’s Thesis, Wuhan University of Science and Technology, Wuhan, China, 2016. [Google Scholar]
- Wang, H.J.; Fu, B.; Xiang, L.; Chou, S.T. Evolution characteristics of microstructure and texture of CGO steel. Trans. Mater. Heat. Treat. 2016, 37, 90–97. [Google Scholar]
- Fang, F.; Zhang, Y.X.; Lu, X.; Wang, Y.; Lan, M.F.; Yuan, G.; Misra RD, K.; Wang, G.D. Abnormal Growth of {100} Grains and Strong Cube Texture in Strip Cast Fe-Si Electrical Steel. Scr. Mater. 2018, 147, 33–36. [Google Scholar] [CrossRef]
- He, Z.Z.; Zhao, Y.; Luo, H.W. Electrical Steel; Metallurgical Industry Press: Beijing, China, 2012. [Google Scholar]
- Ray, R.K.; Jonas, J.J.; Hook, R.E. Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels. Int. Mater. Rev. 1994, 39, 129–172. [Google Scholar] [CrossRef]
- Oyarzábal, M.; Martínez-de-Guerenu, A.; Gutiérrez, I. Effect of Stored Energy and Recovery on the Overall Recrystallization Kinetics of a Cold Rolled Low Carbon Steel. Mater. Sci. Eng. A 2008, 485, 200–209. [Google Scholar] [CrossRef]
- Homma, H.; Nakamura, S.; Yoshinaga, N. On {h,1,1}<1/h,1,2> the Recrystallisation Texture of Heavily Cold Rolled BCC steel. Mater. Sci. Forum 2004, 467, 269–274. [Google Scholar]
- Li, H.Z.; Liu, Z.Y.; Wang, X.L.; Ren, H.M.; Li, C.G.; Cao, G.M. {114}<481> Annealing Texture in Twin-Roll Casting Non-Oriented 6.5 wt% Si Electrical Steel. J. Mater. Sci. 2017, 52, 247–259. [Google Scholar]
- Samajdar, I.; Cicale, S.; Verlinden, B.; Abbruzzesse, G. Primary Recrystallization in a Grain Oriented Silicon Steel: On the Origin of Goss {110}<001>Grains. Scr. Mater. 1998, 39, 1083–1088. [Google Scholar]
- Dorner, D.; Lahn, L.; Zaefferer, S. Investigation of the Primary Recrystallization Microstructure of Cold Rolled and Annealed Fe 3 percent Si Single Crystals with Goss Orientation. Mater. Sci. Forum 2004, 467, 129–134. [Google Scholar] [CrossRef]
- Dang, N.; Li, Z.C.; Tang, D.; Zhang, W.K.; Sun, Q. Origination and Abnormal Growth Behavior of Goss Grains During High Temperature Annealing Process of 0.20mm CGO Silicon Steel. J. Mater. Eng. 2016, 44, 1–7. [Google Scholar]
- Yang, Q.; Yan, M.Q.; Qian, H.; Wang, L.L.; Mao, W.M.; Jiang, Q.W.; Jin, W.X. Analysis the Formation Law of Hi-B Oriented Silicon Steel Goss Texture by EBSD. In Proceedings of the Annual Meeting of China Electrical Steel Professionals QIRT 11, Xiamen, China, 9 December 2010. [Google Scholar]
Element | C | Si | Mn | S | Al | N | Cu | Fe |
---|---|---|---|---|---|---|---|---|
Content | 0.05 | 3.0 | 0.10 | 0.005 | 0.02 | 0.007 | 0.015 | Bal. |
Process | Hot Rolling | Normalizing | Cold Rolling | Decarburing Annealing | ||||
---|---|---|---|---|---|---|---|---|
Surface Layer | 1/4 Layer | 1/2 Layer | Surface Layer | 1/4 Layer | 1/2 Layer | |||
content/% | 6.75 | 11.5 | 0.04 | 5.47 | 5.89 | 0 | 0 | 0.0615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Fan, L. Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel. Metals 2025, 15, 268. https://doi.org/10.3390/met15030268
Fu Y, Fan L. Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel. Metals. 2025; 15(3):268. https://doi.org/10.3390/met15030268
Chicago/Turabian StyleFu, Yujie, and Lifeng Fan. 2025. "Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel" Metals 15, no. 3: 268. https://doi.org/10.3390/met15030268
APA StyleFu, Y., & Fan, L. (2025). Microstructure and Texture Evolution of High Permeability Grain-Oriented Silicon Steel. Metals, 15(3), 268. https://doi.org/10.3390/met15030268