Nonlinear Ultrasonic Guided Wave Method Using Semi-Analytical Finite Element (SAFE) Technique on a Damaged SWO-V Spring Coil
<p>Diagram of cylindrical waveguide rod.</p> "> Figure 2
<p>SAFE model of rod in cylindrical coordinates.</p> "> Figure 3
<p>Discretization of a pipe with 1D three-node elements.</p> "> Figure 4
<p>Numerical L mode dispersion curves of the specimen based on the SAFE technique.</p> "> Figure 5
<p>Diagram of second harmonic wave testing method.</p> "> Figure 6
<p>Diagram of Nakamura fatigue test with the rotating-bending machine.</p> "> Figure 7
<p>The received signal: time domain waveform.</p> "> Figure 8
<p>The received signal for Fourier spectra of the fundamental and second harmonic signal.</p> "> Figure 9
<p>Nonlinearity with shot peening and without shot peening.</p> "> Figure 10
<p>Nonlinearity for fatigue-damaged spring rods.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Nonlinear Wave Theory
2.2. General Solution of Nonlinear Wave Equation in a Solid Cylindrical Rod
- Nonzero power flux from the primary to the secondary wave: ;
- Matching phase and group velocities require equal phase and group velocities of the primary and the secondary waves when (synchronism).
2.3. Phase Matching Mode
3. Experiment Setup
3.1. Material Properties
3.2. Experimental Design
3.3. Experimental Set Up
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bermes, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 2007, 90, 021901. [Google Scholar] [CrossRef]
- Nagy, P.B. Fatigue damage assessment by nonlinear ultrasonic material characterization. Ultrasonics 1998, 36, 275–381. [Google Scholar] [CrossRef]
- Buck, O. Harmonic generation for measurement of internal stress as produced by dislocation. IEEE Trans. Sonics Ultrason. 1976, 23, 346–350. [Google Scholar] [CrossRef]
- Kim, J.Y.; Qu, J.; Jacobs, L.J. Acoustic nonlinearity parameter due to micro-plasticity. J. Nondestruct. Eval. 2006, 25, 29–37. [Google Scholar] [CrossRef]
- Li, W.; Cho, Y.; Achenbach, J.D. Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct. 2012, 21, 085019. [Google Scholar] [CrossRef]
- Li, W.; Choi, J.; Cho, Y. Second Harmonic Generation of Shear Horizontal Guided Wave Propagation in Plate-like structures. Phys. Procedia 2015, 70, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, J.; Min, J.; Cho, Y. Defects Inspection in Wires by Nonlinear Ultrasonic-Guided Wave Generated by Electromagnetic Sensors. Appl. Sci. 2020, 10, 4479. [Google Scholar] [CrossRef]
- Deng, M. Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 1998, 84, 3500–3505. [Google Scholar]
- Deng, M.; Liu, Z. Modal analysis of second-harmonic generation of shear horizontal modes in an elastic plate. Appl. Phys. Lett. 2002, 81, 1916–1918. [Google Scholar] [CrossRef]
- Deng, D. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 2003, 94, 4152. [Google Scholar] [CrossRef]
- De Lima, W.J.; Hamilton, M.F. Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 2003, 265, 819–839. [Google Scholar] [CrossRef]
- De Lima, W.J.; Hamilton, M.F. Finite-amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 2006, 41, 1–11. [Google Scholar] [CrossRef]
- Kim, J.; Zhu, B.; Cho, Y. An experimental study on second harmonic generation of guided wave in fatigued spring rod. J. Mech. Sci. Technol. 2019, 33, 4105–4109. [Google Scholar] [CrossRef]
- Li, W.; Deng, M.; Cho, Y. Cumulative Second Harmonic Generation of Ultrasonic Guided Waves Propagation in Tube-Like Structure. J. Comput. Acoust. 2016, 24, 1650011. [Google Scholar] [CrossRef]
- Kim, J.; Jacobs, L.J.; Qu, J. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 2006, 120, 1266. [Google Scholar] [CrossRef]
- Gazis, D.C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders. 1. Analytical foundation. J. Acoust. Soc. Am. 1959, 31, 568–573. [Google Scholar] [CrossRef]
- Rose, J.L. A baseline and vision of ultrasonic guided wave inspection potential. J. Pres. Ves. Tech. 2002, 124, 273–282. [Google Scholar] [CrossRef]
- Lowe, M.J.S.; Alleyne, D.N.; Cawley, P. Defect detection in pipes using guided waves. Ultrasonics 1998, 36, 147–154. [Google Scholar] [CrossRef]
- Cho, H.J.; Hasanian, M.; Shana, S.; Lissenden, C.J. Nonlinear guided wave technique for localized damage detection in plates with surface-bonded sensors to receive Lamb waves generated by shear-horizontal wave mixing. NdtE Int. 2019, 102, 35–46. [Google Scholar] [CrossRef]
- Guan, R.; Lu, Y.; Wang, K.; Su, Z. Fatigue crack detection in pipes with multiple mode nonlinear guided waves. Struct. Health Monit. 2019, 18, 180–192. [Google Scholar] [CrossRef]
- Li, W.; Jiang, C.; Qing, X.; Liu, L.; Deng, M. Assessment of low-velocity impact damage in composites by the measure of second-harmonic guided waves with the phase-reversal approach. Sage J. 2020, 103, 1–14. [Google Scholar] [CrossRef]
- Yeung, C.; Tai Ng, C. Nonlinear guided wave mixing in pipes for detection of material nonlinearity. J. Sound Vib. 2020, 485, 115541. [Google Scholar] [CrossRef]
- Lowe, P.; Lais, H.; Paruchuri, V.; Gan, T. Application of Ultrasonic Guided Waves for Inspection of High Density Polyethylene Pipe Systems. Sensors 2020, 20, 3184. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Lu, T.; Zou, F.; Wang, K.; Su, Z. A simplified analytical model for the investigation of contact acoustic nonlinearity in pipe structures. Int. J. Mech. Sci. 2021, 197, 06328. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Qing, X.; Cho, Y. Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor. Metals 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Rauter, N.; Lammering, R. Numerical simulation of elastic wave propagation in isotropic media considering material and geometrical nonlinearities. Smart Mater. Struct. 2015, 24, 045027. [Google Scholar] [CrossRef]
- Li, W.B.; Deng, X.; Xiang, Y.X. Review on second-harmonic generation of ultrasonic guided waves in solid media (I): Theoretical analyses. Chin. Phys. B 2017, 26, 114302. [Google Scholar] [CrossRef]
- Matlack, K.H.; Kim, J.Y.; Jacobs, L.J.; Qu, J. Experimental characterization of efficient second harmonic generation of lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 2011, 109, 014905. [Google Scholar] [CrossRef]
- Hayashi, T.; Song, W.J.; Rose, J.L. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 2003, 41, 175–183. [Google Scholar] [CrossRef]
- Yan, F. Ultrasonic Guided Wave Phased Array for Isotropic and Anisotropic Plates. Ph.D. Thesis, Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA, 2008. [Google Scholar]
- Yamada, Y. Materials for Springs; Japan Society of Spring Engineers: Tokyo, Japan, 2007; ISBN 978-3-540-73811-4. [Google Scholar]
- Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University press: Cambridge, MA, USA, 2014. [Google Scholar]
- Bussloti, R.; Canale, L.C.F.; Totten, G. Delta Ferrite in Heat Treated Bolts—Characterization and Consequences. In Proceedings of the Heat Treat 2013 American Society for Metals, Indianapolis, IN, USA, 16–18 September 2013. [Google Scholar]
- Michihiko, A.; Noritoshi, T. Analysis of Load, Stress and Deflection in Nakamura-Type Rotating-bending fatigue Test. Trans. Jpn. Soc. Spring Eng. 1992, 37, 59–64. [Google Scholar]
Items | Values |
---|---|
Poisson’s ratio | 0.35 |
Elastic modulus (GPa) | 205 |
Density (Kg/m3) | 7850 |
Diameter (mm) | 3.1 |
The Chemical Compositions of Rod Material: SWO-V (Mass %) | |||||
---|---|---|---|---|---|
C | Mn | Si | P | S | Cu |
0.60–0.75 | 0.60–0.90 | 0.12–0.32 | Under 0.025 | Under 0.025 | Under 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, J.; Zhu, B.; Cho, Y. Nonlinear Ultrasonic Guided Wave Method Using Semi-Analytical Finite Element (SAFE) Technique on a Damaged SWO-V Spring Coil. Metals 2021, 11, 752. https://doi.org/10.3390/met11050752
Kim J, Park J, Zhu B, Cho Y. Nonlinear Ultrasonic Guided Wave Method Using Semi-Analytical Finite Element (SAFE) Technique on a Damaged SWO-V Spring Coil. Metals. 2021; 11(5):752. https://doi.org/10.3390/met11050752
Chicago/Turabian StyleKim, Jeongnam, Junpil Park, Bo Zhu, and Younho Cho. 2021. "Nonlinear Ultrasonic Guided Wave Method Using Semi-Analytical Finite Element (SAFE) Technique on a Damaged SWO-V Spring Coil" Metals 11, no. 5: 752. https://doi.org/10.3390/met11050752
APA StyleKim, J., Park, J., Zhu, B., & Cho, Y. (2021). Nonlinear Ultrasonic Guided Wave Method Using Semi-Analytical Finite Element (SAFE) Technique on a Damaged SWO-V Spring Coil. Metals, 11(5), 752. https://doi.org/10.3390/met11050752