In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis
<p>Ramachandran plots for energy-minimized proteins from YASARA: (<b>a</b>) CotH3; (<b>b</b>) mucoricin; (<b>c</b>) RdRp; (<b>d</b>) lanosterol 14 alpha-demethylase.</p> "> Figure 2
<p>Ramachandran plots for energy-minimized proteins from UCSF Chimera: (<b>a</b>) CotH3; (<b>b</b>) mucoricin; (<b>c</b>) RdRp; (<b>d</b>) lanosterol 14 alpha-demethylase.</p> "> Figure 3
<p>ERRAT plots for energy-minimized proteins from YASARA: (<b>a</b>) CotH3; (<b>b</b>) mucoricin; (<b>c</b>) RdRp; (<b>d</b>) lanosterol 14 alpha-demethylase. (* The Y-axis is the error axis with two lines which indicates the confidence with the possibility to reject regions that exceed error value).</p> "> Figure 4
<p>ERRAT plots for energy-minimized proteins from UCSF Chimera: (<b>a</b>) CotH3; (<b>b</b>) mucoricin; (<b>c</b>) RdRp; (<b>d</b>) lanosterol 14 alpha-demethylase. (* The Y-axis is the error axis with two lines which indicates the confidence with the possibility to reject regions that exceed error value).</p> "> Figure 5
<p>Three-dimensional protein target structures: (<b>a</b>) CotH3; (<b>b</b>) mucoricin; (<b>c</b>) exo-1,3-beta-glucan synthase (<b>d</b>) RdRp; (<b>e</b>) rhizopuspepsin; (<b>f</b>) lanosterol 14 alpha-demethylase; (<b>g</b>) fungal lipase.</p> "> Figure 6
<p>CAST-p pocket estimation: (<b>a</b>) CotH3 (<b>b</b>) mucoricin (<b>c</b>) exo-1,3-beta-glucan synthase (<b>d</b>) RdRp (<b>e</b>) rhizopuspepsin (<b>f</b>) lanosterol 14 alpha-demethylase (<b>g</b>) fungal lipase.</p> "> Figure 7
<p>Ligand selection criteria—a schematic representation (MNPs—marine natural products).</p> "> Figure 8
<p>CotH3-hyrtimomine A docked complex and interaction map.</p> "> Figure 9
<p>Mucoricin-latrunculin A docked complex and interaction map.</p> "> Figure 10
<p>exo-1,3-beta-glucan synthase-aurantoside I docked complex and interaction map.</p> "> Figure 11
<p>RdRp-naamine D docked complex and interaction map.</p> "> Figure 12
<p>Rhizopuspepsin-latrunculin S docked complex and interaction map.</p> "> Figure 13
<p>Lanosterol 14 alpha-demethylase-(+)-curcudiol docked complex and interaction map.</p> "> Figure 14
<p>Fungal lipase-(+)-curcuphenol docked complex and interaction map.</p> "> Figure 15
<p>MD simulation output for CotH3-hyrtimomine A docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 16
<p>MD simulation output for mucoricin-latrunculin A docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 17
<p>MD simulation output for exo-1,3-beta-glucan synthase-aurantoside I docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 18
<p>MD simulation output for RdRp-naamine D docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 19
<p>MD simulation output for rhizopuspepsin-latrunculin S docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 20
<p>MD simulation output for lanosterol 14 alpha-demethylase-(+)-curcudiol docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 21
<p>MD simulation output for fungal lipase-(+)-curcuphenol docked complex: (<b>A</b>) deformability; (<b>B</b>) B-factor; (<b>C</b>) variance; (<b>D</b>) eigenvalue; (<b>E</b>) covariance map; (<b>F</b>) elastic network model.</p> "> Figure 22
<p>Swiss-ADME boiled egg graph showing permeability of all 35 compounds.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Drug Targets Selection
2.2. Energy Minimization
2.3. Structure Analysis and Quality Estimation
2.4. CAST-p Active Site Prediction
2.5. Ligands Screening and Selection Criteria
- Must be discoverable in databases, such as PubChem and ChemSpider.
- Must pass the PASS online screening (accuracy > 80%)—show inhibition potential against the chosen targets. The value for the probability of being active must be higher than the value for being inactive.
PASS Online Analysis
2.6. Molecular Docking and Interaction Studies
2.6.1. CotH3
2.6.2. Docking Mucoricin
2.6.3. exo-1,3-beta-glucan Synthase
2.6.4. Docking RNA-Directed RNA Polymerase (RdRp)
2.6.5. Docking Rhizopuspepsin
2.6.6. Lanosterol 14 Alpha-Demethylase
2.6.7. Docking Fungal Lipase
2.6.8. Molecular Dynamic Simulations
CotH3-hyrtimomine A Complex
Mucoricin-latrunculin A Complex
exo-1,3-beta-glucan Synthase-aurantoside I Complex
RdRp-naamine D Complex
Rhizopuspepsin-latrunculin S Complex
Lanosterol 14 alpha-demethylase-(+)-curcudiol Complex
Fungal Lipase-(+)-curcuphenol Complex
2.7. Drug-Likeness Assessment
2.7.1. Lipinski’s Rule of Five Analysis
2.7.2. Swiss-ADME Output
2.7.3. OSIRIS Analysis
2.8. Toxicity Investigation
2.8.1. ProTox-II
2.8.2. Acute Toxicity Analysis
StopTox Acute Toxicity Analysis | |||||
---|---|---|---|---|---|
Ligands | Inhalation Toxicity | Oral Toxicity | Dermal Toxicity | Skin Sensitization | Irritation and Corrosion |
Hyrtimomine A | No | No | No | No | Eyes (No), Skin (No) |
Latrunculin A | No | No | No | No | Eyes (Yes), Skin (No) |
Aurantoside I | No | No | No | No | Eyes (Yes), Skin (No) |
Naamine D | No | Yes | No | No | Eyes (Yes), Skin (No) |
Latrunculin S | No | No | No | No | Eyes (Yes), Skin (No) |
(+)-Curcudiol | No | No | No | Yes | Eyes (Yes), Skin (No) |
(+)-Curcuphenol | No | No | No | Yes | Eyes (Yes), Skin (No) |
Drugs | |||||
Amphotericin B | No | No | No | No | Eyes (Yes), Skin (No) |
Isavuconazole | No | No | No | No | Eyes (Yes), Skin (No) |
Posaconazole | No | Yes | No | No | Eyes (Yes), Skin (No) |
3. Discussion
4. Materials and Methods
4.1. Targets and Ligands Retrieval
4.2. Visualization Tools
4.3. Energy Minimization and Quality Check
4.4. Active Site Prediction
4.5. Molecular Docking
4.6. MD Simulations
4.7. Drug-Likeness Physicochemical Property Analysis
4.8. Toxicity Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Pilmis, B.; Alanio, A.; Lortholary, O.; Lanternier, F. Recent advances in the understanding and management of mucormycosis. F1000Research 2018, 7, 1429. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Castro, S.; Chora-Hernandez, L.D.; Trujillo-Alonso, G.; Calvo-Villalobos, I.; Sanchez-Rangel, A.; Ferrer-Alpuin, E.; Ruiz-Jimenez, M.; Corzo-Leon, D.E. COVID-19-associated mucormycosis, diabetes and steroid therapy: Experience in a single centre in Western Mexico. Mycoses 2022, 65, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Agarwal, R.; Rudramurthy, S.M.; Shevkani, M.; Xess, I.; Sharma, R.; Savio, J.; Sethuraman, N.; Madan, S.; Shastri, P.; et al. Multicenter Epidemiologic Study of Coronavirus Disease–Associated Mucormycosis, India. Emerg. Infect. Dis. 2021, 27, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Petrikkos, G.; Skiada, A.; Lortholary, O.; Roilides, E.; Walsh, T.J.; Kontoyiannis, D.P. Epidemiology and clinical manifestations of mucormycosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54 (Suppl. 1), S23–S34. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P. Pathogenesis of mucormycosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54 (Suppl. 1), S16–S22. [Google Scholar] [CrossRef]
- Fricke-Galindo, I.; Falfán-Valencia, R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review. Front. Immunol. 2021, 12, 622176. [Google Scholar] [CrossRef]
- Roden, M.M.; Zaoutis, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiou, C.C.; Chu, J.H.; et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin. Infect. Dis. 2005, 41, 634–653. [Google Scholar] [CrossRef] [Green Version]
- Centre for Disease Control and Prevention. Available online: https://www.cdc.gov/fungal/diseases/mucormycosis/statistics.html (accessed on 31 January 2022).
- Horiguchi, T.; Tsukamoto, T.; Toyama, Y.; Sasaki, T.; Nakamura, T.; Sakurai, A.; Kuriyama, N.; Komatsu, S.; Shigeyasu, Y.; Ina, T.; et al. Fatal disseminated mucormycosis associated with COVID-19. Respirol. Case Rep. 2022, 10, e0912. [Google Scholar] [CrossRef]
- Muthu, V.; Rudramurthy, S.M.; Chakrabarti, A.; Agarwal, R. Epidemiology and Pathophysiology of COVID-19-Associated Mucormycosis: India versus the Rest of the World. Mycopathologia 2021, 186, 739–754. [Google Scholar] [CrossRef]
- Dogra, S.; Arora, A.; Aggarwal, A.; Passi, G.; Sharma, A.; Singh, G.; Barnwal, R.P. Mucormycosis amid COVID-19 Crisis: Pathogenesis, Diagnosis, and Novel Treatment Strategies to Combat the Spread. Front. Microbiol. 2022, 12, 794176. [Google Scholar] [CrossRef]
- Hoenigl, M.; Seidel, D.; Carvalho, A.; Rudramurthy, S.M.; Arastehfar, A.; Gangneux, J.P.; Nasir, N.; Bonifaz, A.; Araiza, J.; Klimko, N.; et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe, 2022, in press. [CrossRef]
- Tandon, A.; Pandey, L. COVID-19, steroids, and mucormycosis. Indian J. Ophthalmol. 2021, 69, 1970. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. 2021, 15, 102146. [Google Scholar] [CrossRef]
- Aranjani, J.M.; Manuel, A.; Abdul, R.H.I.; Mathew, S.T. COVID-19-associated mucormycosis: Evidence-based critical review of an emerging infection burden during the pandemic’s second wave in India. PLoS Negl. Trop. Dis. 2021, 15, e0009921. [Google Scholar] [CrossRef] [PubMed]
- Anjum, K.; Abbas, S.Q.; Shah, S.A.; Akhter, N.; Batool, S.; Hassan, S.S. Marine Sponges as a Drug Treasure. Biomol. Ther. 2016, 24, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laport, M.S.; Santos, O.C.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Varijakzhan, D.; Loh, J.Y.; Yap, W.S.; Yusoff, K.; Seboussi, R.; Lim, S.E.; Lai, K.S.; Chong, C.M. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar. Drugs 2021, 19, 246. [Google Scholar] [CrossRef]
- Cardoso, J.; Nakayama, D.G.; Sousa, E.; Pinto, E. Marine-Derived Compounds and Prospects for Their Antifungal Application. Molecules 2020, 25, 5856. [Google Scholar] [CrossRef]
- Mehbub, M.F.; Perkins, M.V.; Zhang, W.; Franco, C.M.M. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); A promising source for drug discovery, exploration and future prospects. Biotechnol. Adv. 2016, 34, 473–491. [Google Scholar] [CrossRef]
- Abdelaleem, E.; Mamdouh, S.; Desoukey, S.; Miaomiao, L.; Ronald, Q.; Usama, A. Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); A promising source for drug discovery. RSC Adv. 2020, 10, 34959–34976. [Google Scholar] [CrossRef]
- Guo, P.; Li, G.; Liu, Y.; Lu, A.; Wang, Z.; Wang, Q. Naamines and Naamidines as Novel Agents against a Plant Virus and Phytopathogenic Fungi. Mar. Drugs 2018, 16, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørsvik, H.; Sandtorv, A. Synthesis of Imidazole Alkaloids Originated in Marine Sponges. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Volume 42, pp. 33–57. [Google Scholar] [CrossRef]
- Koswatta, P.B.; Lovely, C.J. Concise total synthesis of naamine G and naamidine H. Chem. Commun. (Camb.) 2010, 46, 2148–2150. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Tsuno, N.; Nakamura, S.; Taguchi, N.; Yamashita, M.; Kawasaki, I.; Fujieda, M. Total Syntheses of Naamine A and Naamidine A, Marine Imidazole Alkaloids. Heterocycles 2000, 53, 1939–1955. [Google Scholar] [CrossRef]
- Aberle, N.S.; Lessene, G.; Watson, K.G. A concise total synthesis of naamidine A. Org. Lett. 2006, 8, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Momose, R.; Tanaka, N.; Fromont, J.; Kobayashi, J. Hyrtimomines A-C, new heteroaromatic alkaloids from a sponge Hyrtios sp. Org. Lett. 2013, 15, 2010–2013. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N. Search for Structurally Unique Bioactive Natural Products. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2015, 135, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Casapullo, A.; Bifulco, G.; Bruno, I.; Riccio, R. New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J. Nat. Prod. 2000, 63, 447–451. [Google Scholar] [CrossRef]
- Oh, K.B.; Mar, W.; Kim, S.; Kim, J.Y.; Lee, T.H.; Kim, J.G.; Shin, D.; Sim, C.J.; Shin, J. Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the sponge Spongosorites sp. Biol. Pharm. Bull. 2006, 29, 570–573. [Google Scholar] [CrossRef] [Green Version]
- Bao, B.; Zhang, P.; Lee, Y.; Hong, J.; Lee, C.O.; Jung, J.H. Monoindole alkaloids from a marine sponge Spongosorites sp. Mar. Drugs 2007, 5, 31–39. [Google Scholar] [CrossRef]
- Bao, B.; Sun, Q.; Yao, X.; Hong, J.; Lee, C.O.; Cho, H.Y.; Jung, J.H. Bisindole alkaloids of the topsentin and hamacanthin classes from a marine sponge Spongosorites sp. J. Nat. Prod. 2007, 70, 2–8. [Google Scholar] [CrossRef]
- El Sayed, K.A.; Youssef, D.T.; Marchetti, D. Bioactive natural and semisynthetic latrunculins. J. Nat. Prod. 2006, 69, 219–223. [Google Scholar] [CrossRef]
- Khalifa, S.; Ahmed, S.; Mesbah, M.; Youssef, D.; Hamann, M. Quantitative determination of latrunculins A and B in the Red Sea sponge Negombata magnifica by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 832, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Fürstner, A.; De Souza, D.; Turet, L.; Fenster, M.D.; Parra-Rapado, L.; Wirtz, C.; Mynott, R.; Lehmann, C.W. Total syntheses of the actin-binding macrolides latrunculin A, B, C, M, S and 16-epi-latrunculin B. Chemistry 2007, 13, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Fürstner, A.; Kirk, D.; Fenster, M.D.; Aïssa, C.; De Souza, D.; Müller, O. Diverted total synthesis: Preparation of a focused library of latrunculin analogues and evaluation of their actin-binding properties. Proc. Natl. Acad. Sci. USA 2005, 102, 8103–8108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edrada, R.A.; Heubes, M.; Brauers, G.; Wray, V.; Berg, A.; Grafe, U.; Wohlfarth, M.; Muhlbacher, J.; Schaumann, K.; Sudarsono, S.; et al. Online analysis of xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J. Nat. Prod. 2002, 65, 1598–1604. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, J.; Quan, W.; Sun, Y.; She, X.; Pan, X. The first asymmetric total syntheses and determination of absolute configurations of xestodecalactones B and C. J. Org. Chem. 2007, 72, 2694–2697. [Google Scholar] [CrossRef]
- Pal, R.; Rahaman, H.; Gurjar, K.M. A carbohydrate based total synthesis of Xestodecalactone B and C: Revision of the absolute configuration. Curr. Org. Chem. 2012, 16, 1159–1168. [Google Scholar] [CrossRef]
- El Sayed, K.A.; Yousaf, M.; Hamann, M.T.; Avery, M.A.; Kelly, M.; Wipf, P. Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and -curcudiol isolated from a deep reef collection of the Jamaican sponge Didiscus oxeata. J. Nat. Prod. 2002, 65, 1547–1553. [Google Scholar] [CrossRef]
- Ono, M.; Ogura, Y.; Hatogai, K.; Akita, H. Total synthesis of (S)-(+)-curcudiol, and (S)-(+)- and (R)-(−)-curcuphenol. Chem. Pharm. Bull. 2001, 49, 1581–1585. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.; Pomponi, S.; McConnell, O.; Kohmoto, S.; Mccarthy, P. (+)-Curcuphenol and (+)-Curcudiol, Sesquiterpene Phenols from Shallow and Deep Water Collections of the Marine Sponge Didiscus flavus. J. Nat. Prod. 2004, 50, 976–978. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, J.; Jung, H. Efficient total synthesis of (+)-curcuphenol via asymmetric Organocatalysis. Tetrahedron Lett. 2005, 46, 2437–2439. [Google Scholar] [CrossRef]
- Watanadilok, R.; Sonchaeng, P.; Kijjoa, A.; Damas, A.M.; Gales, L.; Silva, A.M.; Herz, W. Tetillapyrone and nortetillapyrone, two unusual hydroxypyran-2-ones from the marine sponge Tetilla japonica. J. Nat. Prod. 2001, 64, 1056–1058. [Google Scholar] [CrossRef]
- Wattanadilok, R.; Sawangwong, P.; Rodrigues, C.; Cidade, H.; Pinto, M.; Pinto, E.; Silva, A.; Kijjoa, A. Antifungal activity evaluation of the constituents of Haliclona baeri and Haliclona cymaeformis, collected from the Gulf of Thailand. Mar. Drugs 2007, 5, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, V.; Raghubir, R.; Gupta, P. New ceramides from the sponge Cinachyra cavernosa. J. Asian Nat. Prod. Res. 2008, 10, 757–761. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, A.A.; Al-Massarani, S.M.; Shaala, L.A.; Alahdald, A.M.; Al-Said, M.S.; Ashour, A.E.; Kumar, A.; Abdel-Kader, M.S.; Abdel-Mageed, W.M.; Youssef, D.T. Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria. Mar. Drugs 2016, 14, 82. [Google Scholar] [CrossRef] [Green Version]
- Al-Massarani, S.M.; El-Gamal, A.A.; Al-Said, M.S.; Abdel-Kader, M.S.; Ashour, A.E.; Kumar, A.; Abdel-Mageed, W.M.; Al-Rehaily, A.J.; Ghabbour, H.A.; Fun, H.K. Studies on the Red Sea Sponge Haliclona sp. for its Chemical and Cytotoxic Properties. Pharmacogn. Mag. 2016, 12, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnayake, A.S.; Davis, R.A.; Harper, M.K.; Veltri, C.A.; Andjelic, C.D.; Barrows, L.R.; Ireland, C.M. Aurantosides G, H, and I: Three new tetramic acid glycosides from a Papua New Guinea Theonella swinhoei. J. Nat. Prod. 2005, 68, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Subramani, R.; Feussner, K.D.; Aalbersberg, W. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar. Drugs 2012, 10, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Sata, N.U.; Matsunaga, S.; Fusetani, N.; van Soest, R.W. Aurantosides D, E, and F: New antifungal tetramic acid glycosides from the marine sponge Siliquariaspongia japonica. J. Nat. Prod. 1999, 62, 969–971. [Google Scholar] [CrossRef]
- Matsunaga, S.; Fusetani, N.; Kato, Y.; Hirota, H. Aurantosides A and B: Cytotoxic tetramic acid glycosides from the marine sponge Theonella sp. J. Am. Chem. Soc. 1991, 113, 9690–9692. [Google Scholar] [CrossRef]
- Angawi, R.F.; Bavestrello, G.; Calcinai, B.; Dien, H.A.; Donnarumma, G.; Tufano, M.A.; Paoletti, I.; Grimaldi, E.; Chianese, G.; Fattorusso, E.; et al. Aurantoside J: A new tetramic acid glycoside from Theonella swinhoei. Insights into the antifungal potential of aurantosides. Mar. Drugs 2011, 9, 2809–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehr, F.; Kretschmar, M.; Kröger, C.; Hube, B.; Schäfer, W. Microbial lipases as virulence factors. J. Mol. Catal. B Enzym. 2003, 22, 347–355. [Google Scholar] [CrossRef]
- Almeida, C.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Roseo de Oliveira, M.; Rodrigues, I.A.; Bizzo, H.R.; Gama, P.E.; Alviano, D.S.; Alviano, C.S. Piper Essential Oils Inhibit Rhizopus oryzae Growth, Biofilm Formation, and Rhizopuspepsin Activity. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5295619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madanagopal, P.; Ramprabhu, N.; Jagadeesan, R. In silico prediction and structure-based multitargeted molecular docking analysis of selected bioactive compounds against mucormycosis. Bull. Natl. Res. Cent. 2022, 46, 24. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.D.; Kaur, I. Targeting β-glucan synthase for Mucormycosis “The black fungus” maiming Covid patients in India: Computational insights. J. Drug Deliv. Ther. 2021, 11, 9–14. [Google Scholar] [CrossRef]
- Elfiky, A. The antiviral Sofosbuvir against mucormycosis: An in silico perspective. Future Virol. 2019, 14, 739–744. [Google Scholar] [CrossRef]
- Mandal, S. Exploring the possible phytochemical treatment of black fungus by ADMET profiling and molecular docking study targeting rhizopuspepsin and lipase from Rhizopus microsporus. Gen. Med. 2021, 9, 20. [Google Scholar]
- Nature. Available online: https://www.nature.com/articles/d41586-022-00104-8 (accessed on 31 January 2022).
- Amoutzias, G.D.; Nikolaidis, M.; Tryfonopoulou, E.; Chlichlia, K.; Markoulatos, P.; Oliver, S.G. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022, 14, 78. [Google Scholar] [CrossRef]
- BBC. Available online: https://www.bbc.com/news/world-asia-india-57897682 (accessed on 31 January 2022).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.V.; Suguna, K. Effect of pH on the structure of rhizopuspepsin. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 1755–1761. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, X.W.; Xu, Y.; Guo, R.T.; Swapna, G.V.T.; Szyperski, T.; Hunt, J.F.; Montelione, G.T. Structural Basis by Which the N-Terminal Polypeptide Segment of Rhizopus chinensis Lipase Regulates Its Substrate Binding Affinity. Biochemistry 2019, 58, 3943–3954. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Larsen, D.S.; Cutfield, S.M.; Cutfield, J.F. Major change in regiospecificity for the exo-1,3-β-glucanase from Candida albicans following its conversion to a glycosynthase. Biochemistry 2014, 53, 3318–3326. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Balasubramanian, M.K. 1,3-beta-Glucan synthase: A useful target for antifungal drugs. Curr. Drug Targets Infect. Disord. 2001, 1, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; Ibrahim, A.S.; Skory, C.; Grabherr, M.G.; Burger, G.; Butler, M.; Elias, M.; Idnurm, A.; Lang, B.F.; Sone, T.; et al. Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication. PLoS Genet. 2009, 5, e1000549. [Google Scholar] [CrossRef] [PubMed]
- Home—Protein—NCBI. Available online: https://www.ncbi.nlm.nih.gov/protein/ (accessed on 7 December 2021).
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202. [Google Scholar] [CrossRef]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- BIOVIA DS, Discovery, Studio. Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 7 December 2021).
- Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins 2002, 47, 393–402. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. App. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmannn, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef] [PubMed]
- López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res. 2014, 42, W271. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 71, 42717. [Google Scholar] [CrossRef] [Green Version]
- Organic Chemistry Portal. Available online: https://www.organic-chemistry.org/ (accessed on 21 December 2021).
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Borba, J.; Alves, V.; Overdahl, K.; Silva, A.; Hall, S.; Overdahl, E.; Braga, R.; Kleinstreuer, N.; Strickland, J.; Allen, D.; et al. STopTox: An In-Silico Alternative to Animal Testing for Acute Systemic and TOPical TOXicity. Environ. Health Perspect. 2022, 130, 27012. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, V.; Voronkina, A.; Binnewerg, B.; Schubert, M.; Muzychka, L.; Wysokowski, M.; Tsurkan, M.V.; Bechmann, N.; Petrenko, I.; Fursov, A.; et al. Naturally drug-loaded chitin: Isolation and applications. Mar. Drugs 2019, 17, 574. [Google Scholar] [CrossRef] [Green Version]
- Binnewerg, B.; Schubert, M.; Voronkina, A.; Muzychka, L.; Wysokowski, M.; Petrenko, I.; Djurović, M.; Kovalchuk, V.; Tsurkan, M.; Martinovic, R.; et al. Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Mater. Sci. Eng. C 2020, 109, 110566. [Google Scholar] [CrossRef]
Drug Targets | |||
---|---|---|---|
Targets | NCBI Accession ID | Localization Probability | Function |
RdRp (Region: RVT_1) | BAH03542.1 | Extracellular | Replication of RNA |
CotH3 (Region: CotH) | EIE87171 | Extracellular | Protection |
Lanosterol 14 alpha-demethylase | EIE87079 | Plasma membrane | Ergosterol biosynthesis |
Mucoricin | EIE81863 | Cytoplasmic | Pathogenicity |
PDB ID | |||
Rhizopuspepsin | 1UH9 | Extracellular | Protein hydrolysis |
Fungal Lipase | 6A0W | Extracellular | Imparts virulence |
exo-1,3-beta-glucan synthase | 4M80 | Extracellular | Beta-glucan production |
Databases Search | MNPs Selection for This Study | |||
---|---|---|---|---|
PubChem and ChemSpider | MNPs Included | MNPs Excluded | ||
Marine Natural Products (MNPs) | Target Inhibitors | Target Non-Inhibitors | Pass Online (No Output) | Similar Output |
Naamine A–G | A, B, D, E, F, G | C | - | - |
Naamidine A–J | A, B, C | D-J | - | - |
Hyrtimomine A–K | A, B, C, F, G | - | D, E, H, I, J, K | - |
Xestodecalactone A–F | A–F | - | - | - |
Topsentin, Topsentin A, C, D | Topsentin, A, D | C | - | - |
Latrunculin A, B, C, D, M, S, T | A, B, S | C, D, M, T | - | - |
Aurantoside A–K | A–K | - | - | A–H, J |
(+)-Curcudiol, (+)-Curcuphenol | Yes | - | - | - |
Tetillapyrone, Nortetillapyrone | Yes | - | - | - |
PASS Online Predictions | |
---|---|
Ligands | Relevant Potential Biological Activities |
Naamine A, B, D, E, F, G | Antifungal, anti-asthmatic, anti-infective, antiviral, mucositis treatment, a kinase inhibitor, a histidine kinase inhibitor, beta glucuronidase inhibitor, rhizopuspepsin RdRp inhibitor. |
Naamidine A, B, C | Antifungal, anti-asthmatic, anti-infective, anti-eczematic, antiviral, a kinase inhibitor, histidine kinase inhibitor. |
Hyrtimomine A, B, C, F, G | Antifungal, anti-infective, anti-inflammatory, mucositis treatment, a kinase inhibitor, a histidine kinase inhibitor, beta glucuronidase inhibitor, (hyrtimomine G-RdRp inhibitor, and rhizopuspepsin inhibitor). |
Topsentin, Topsentin A, D | Antifungal, anti-infective, kinase inhibitor, mucositis treatment, histidine kinase inhibitor. |
Latrunculin A, B, S | Antifungal, anti-eczematic, antiviral, anti-infective, antibiotic, respiratory distress relief syndrome treatment, antifungal enhancer, beta glucuronidase inhibitor, rhizopuspepsin inhibitor. |
Xestodecalactone A, B, C, D, E, F | Antifungal, anti-eczematic, antiviral, anti-infective, a kinase inhibitor, a histidine kinase inhibitor, beta-glucuronidase inhibitor. |
(+)-Curcudiol | Antifungal, anti-eczematic, antiviral, anti-infective, bronchodilator, mucositis treatment, antiseptic, histidine kinase inhibitor, a lipase inhibitor, exo-1,3-beta-glucan synthase inhibitor, RdRp inhibitor, lanosterol 14 alpha-demethylase inhibitor, alpha and beta-glucuronidase inhibitor. |
(+)-Curcuphenol | Antifungal, anti-eczematic, antiviral, anti-infective, anti-inflammatory, bronchodilator, mucositis treatment, mucolytic, antiseptic, histidine kinase inhibitor, alpha and beta-glucuronidase inhibitor, lanosterol 14 alpha-demethylase inhibitor, a lipase inhibitor, exo-1, three beta-glucan-synthase inhibitors, RdRp inhibitor, rhizopuspepsin inhibitor. |
Tetillapyrone | Antifungal, anti-eczematic, antiviral, anti-infective, histidine kinase inhibitor, beta-glucuronidase inhibitor, RdRp inhibitor, exo-1,3-beta-glucan-synthase inhibitors. |
Nortetillapyrone | Antifungal, anti-eczematic, antiviral, anti-infective, mucolytic, histidine kinase inhibitor, alpha and beta-glucuronidase inhibitor, RdRp inhibitor, exo-1,3-beta-glucan-synthase inhibitors. |
Aurantoside I, K | Antifungal, antiviral, antibiotic, anti-inflammatory, beta-glucuronidase inhibitor, exo-1,3-beta-glucan-synthase inhibitor. |
Drugs | |
Amphotericin B | Antifungal, antiviral, anti-inflammatory, anti-infective, antifungal enhancer, exo-1,3-beta-glucan-synthase inhibitor. |
Isavuconazole | Antifungal, a kinase inhibitor, lanosterol 14 alpha-demethylase inhibitor. |
Posaconazole | Antifungal, anti-eczematic, lanosterol 14 alpha-demethylase inhibitor. |
Targeted Biological Activity of Ligands | ||
---|---|---|
CotH3 | Mucoricin | exo-1,3-beta-glucan Synthase |
Naamine A, B, E, F, G | Naamine A, B, E, F, G | (+)-Curcuphenol |
Naamidine A, B, C | Hyrtimomine B, G | (+)-Curcudiol |
Hyrtimomine A–C, F, G | Latrunculin A, B | Tetillapyrone |
Topsentin | Xestodecalactone A–F | Nortetillapyrone |
Topsentin A, D | Tetillapyrone | Aurantoside I, K |
Xestodecalactone A–F | Nortetillapyrone | Amphotericin B (drug) |
Tetillapyrone | (+)-Curcudiol | |
Nortetillapyrone | (+)-Curcuphenol | |
(+)-Curcudiol | Aurantoside I, K | |
(+)-Curcuphenol | ||
Isavuconazole (drug) | ||
RdRp | Rhizopuspepsin | |
Naamine D | Latrunculin S | |
(+)-Curcudiol | Naamine D | |
(+)-Curcuphenol | (+)-Curcuphenol | |
Tetillapyrone | Hyrtimomine G | |
Nortetillapyrone | ||
Hyrtimomine G | ||
Fungal lipase | Lanosterol 14 alpha demethylase | |
(+)-Curcudiol | (+)-Curcudiol | |
(+)-Curcuphenol | (+)-Curcuphenol | |
Isavuconazole (drug) | ||
Posaconazole (drug) |
CotH3 | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
Naamine A | −6.9 | ASN A: 237, PHE A: 235 | 2 | 2 | 3 |
Naamine B | −6.7 | None | 0 | 3 | 4 |
Naamine E | −6.8 | SER A: 87, TRP A: 89, LEU A: 83, GLY A: 98 | 4 | 1 | 2 |
Naamine F | −6.7 | PHE A: 235, ASN A: 23 | 2 | 0 | 5 |
Naamine G | −6.6 | None | 0 | 0 | 5 |
Naamidine A | −7.4 | None | 0 | 1 | 4 |
Naamidine B | −7.9 | PHE A: 235 | 1 | 0 | 6 |
Naamidine C | −7.7 | PHE A: 235, ASN A: 237 | 2 | 0 | 3 |
Hyrtimomine A | −9 | None | 0 | 0 | 4 |
Hyrtimomine B | −8 | THR A: 241 | 1 | 0 | 4 |
Hyrtimomine C | −7.5 | None | 0 | 0 | 3 |
Hyrtimomine F | −8 | THR A: 241 | 1 | 0 | 3 |
Hyrtimomine G | −7.5 | LEU A: 143, THR A: 241 | 1 | 1 | 4 |
Topsentin | −8.1 | LEU A: 143 | 1 | 0 | 5 |
Topsentin A | −8.8 | PHE A: 235 | 1 | 1 | 3 |
Topsentin D | −8.2 | None | 0 | 0 | 6 |
Xestodecalactone A | −6.8 | GLY A: 98, ASN A: 95 | 2 | 0 | 2 |
Xestodecalactone B | −6.6 | ALA A: 91, GLY A: 98, ASP A: 84 | 3 | 0 | 1 |
Xestodecalactone C | −6.4 | PHE A: 192 | 1 | 0 | 3 |
Xestodecalactone D | −6.7 | LYS A: 109 | 1 | 0 | 2 |
Xestodecalactone E | −6.2 | ALA A: 91, ASN A: 95 | 2 | 0 | 3 |
Xestodecalactone F | −6.2 | THR A: 241 | 1 | 0 | 3 |
(+)-Curcudiol | −5.8 | None | 0 | 0 | 5 |
(+)-Curcuphenol | −6.5 | None | 0 | 0 | 4 |
Tetillapyrone | −6.1 | ARG A: 6 | 1 | 0 | 1 |
Nortetillapyrone | −6.3 | TYR A: 10 | 1 | 0 | 2 |
Literature-Based Ligands Effective Against CotH3 | |||||
12,28-Oxamanzamine A | −10.2 | - | - | - | - |
Haliclonacyclamine B | −9.2 | - | - | - | - |
Deoxytopsentin | −8.5 | - | - | - | - |
Vialinin B | −8.9 | - | - | - | - |
Olorofim | −8.6 | - | - | - | - |
Drugs | |||||
Amphotericin B | −8.1 | ASP A: 44, GLN A: 4, LEU A: 42 | 3 | 0 | 1 |
Isavuconazole | −8.0 | ASN A: 237 | 1 | 0 | 4 |
Posaconazole | −8.8 | LEU A: 193, THR A: 3 | 2 | 1 | 3 |
Mucoricin | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
Naamine A | −7.4 | LEU A: 142, MET A: 1, GLU A: 97, PHE A: 3 | 4 | 0 | 1 |
Naamine B | −6.7 | PHE A: 3 | 1 | 4 | 5 |
Naamine E | −7.6 | LEU A: 142, PHE A: 3, GLU A: 141, GLU A: 97 | 4 | 0 | 2 |
Naamine F | −7.2 | GLU A: 141, GLN A: 14, TRP A: 140 | 3 | 1 | 3 |
Naamine G | −7 | PHE A: 3, GLU A: 97, LEU A: 142 | 3 | 1 | 2 |
Hyrtimomine B | −8.2 | GLU A: 141, GLU A: 97 | 2 | 2 | 2 |
Hyrtimomine G | −7.6 | PHE A: 3, ILE A: 95, MET A: 1, GLU A: 97 | 4 | 0 | 2 |
Latrunculin A | −8.6 | GLU A: 97 | 1 | 0 | 3 |
Latrunculin B | −7.0 | GLU A: 5 | 1 | 0 | 4 |
Xestodecalactone A | −6.6 | GLU A: 97, MET A: 1 | 2 | 0 | 2 |
Xestodecalactone B | −6.9 | MET A: 1 | 1 | 1 | 2 |
Xestodecalactone C | −7.5 | LEU A: 142, GLU A: 97 | 2 | 0 | 1 |
Xestodecalactone D | −6.7 | LEU A: 142 | 1 | 2 | 1 |
Xestodecalactone E | −6.3 | LEU A: 142, MET A: 1, PHE A: 3 | 3 | 1 | 2 |
Xestodecalactone F | −6.1 | ILE A: 95, MET A: 1 | 2 | 1 | 1 |
(+)-Curcudiol | −5.9 | MET A: 1 | 1 | 0 | 2 |
(+)-Curcuphenol | −6.1 | ILE A: 95 | 1 | 0 | 5 |
Tetillapyrone | −6.1 | PHE A: 3, LEU A: 142, TRP A: 140 | 3 | 0 | 1 |
Nortetillapyrone | −6.2 | GLN A: 14, PHE A:3 | 2 | 1 | 1 |
Aurantoside I | −6.8 | ARG A: 130, SER A: 135, ASN A: 137 | 3 | 0 | 3 |
Aurantoside K | −7.1 | PHE A: 3, GLU A: 5, ASN A: 52, GLU A: 97 | 4 | 0 | 4 |
Literature-Based Ligands Effective against Mucoricin | |||||
Parsiguine | −8.2 | - | - | - | - |
Halicyclamine A | −8.2 | - | - | - | - |
Tetrahydrohaliclonacyclamine A | −8.2 | - | - | - | - |
Hesperidin | −8.0 | - | - | - | - |
12,28-Oxamanzamine A | −8.6 | - | - | - | - |
Drugs | |||||
Amphotericin B | −6.8 | GLN A: 76 | 1 | 0 | 1 |
Isavuconazole | −6.2 | PHE A: 3, ILE A: 95 | 2 | 0 | 3 |
Posaconazole | −7.8 | ARG A: 92, GLU A: 104, ASN A: 52, LEU A: 142, GLU A: 141 | 5 | 5 | 6 |
exo-1,3-beta-glucan Synthase | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
(+)-Curcudiol | −7.4 | None | 0 | 0 | 4 |
(+)-Curcuphenol | −8.0 | GLU A: 185 | 1 | 0 | 4 |
Tetillapyrone | −7.8 | ASN A: 139, TRP A: 356 | 2 | 0 | 2 |
Nortetillapyrone | −7.7 | TYR A: 248, ASN A: 139, LEU A: 297 | 3 | 0 | 1 |
Aurantoside I | −11.4 | GLN A:223, HIS A: 247, GLU A: 255, TYR A: 248, ARG A: 258, PHE A: 251 | 6 | 1 | 4 |
Aurantoside K | −8.9 | THR A: 248, HIS A: 246, ASP A: 220, HIS A: 247 | 4 | 1 | 2 |
Drugs | |||||
Amphotericin B | −9.4 | HIS A: 246, PHE A: 225, ASP A: 273, ARG A: 258 | 4 | 0 | 0 |
Isavuconazole | −8.8 | ASN A: 139, HIS A: 246, PHE A: 222, TRP A: 270 | 4 | 1 | 5 |
Posaconazole | −10.8 | GLN A: 223, TYR A: 310 | 2 | 2 | 5 |
RdRp | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
Naamine D | −8.8 | PRO A: 39 | 1 | 0 | 4 |
(+)-Curcudiol | −6.1 | PHE A: 133 | 1 | 0 | 3 |
(+)-Curcuphenol | −6.3 | None | 0 | 0 | 8 |
Tetillapyrone | −6.5 | None | 0 | 3 | 1 |
Nortetillapyrone | −6.1 | HIS A: 50, SER A: 151 | 2 | 0 | 0 |
Hyrtimomine G | −7.1 | GLU A: 35, SER A: 151, LEU A: 41, SER A: 40 | 4 | 0 | 1 |
Literature-Based Ligands Effective against RdRp | |||||
Sofosbuvir (drug) | −6.1 | - | - | - | - |
Ribavirin (drug) | −6.6 | - | - | - | - |
Drugs | |||||
Amphotericin B | −8.6 | ARG A: 136, ASP A: 89, TRP A: 134 | 3 | 0 | 1 |
Isavuconazole | −7.8 | PRO A: 10 | 1 | 0 | 4 |
Posaconazole | −8.2 | TRP A: 134 | 1 | 2 | 4 |
Rhizopuspepsin | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
Naamine D | −6.3 | ASN A: 13, VAL A: 277 | 2 | 1 | 3 |
Hyrtimomine G | −8.4 | ASP A: 33, THR A: 222, ILE A: 15, ASP A: 79 | 4 | 1 | 2 |
Latrunculin S | −9.8 | GLY A: 220 | 1 | 0 | 2 |
(+)-Curcuphenol | −6.7 | ASP A: 218, ASP A: 35 | 2 | 0 | 5 |
Drugs | |||||
Amphotericin B | −8.6 | GLY A: 220 | 1 | 1 | 1 |
Isavuconazole | −6.4 | SER A: 81, SER A: 113 | 2 | 0 | 3 |
Posaconazole | −8.7 | ARG A: 192 | 1 | 3 | 2 |
Lanosterol 14 Alpha-Demethylase | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
(+)-Curcudiol | −11.4 | None | 0 | 0 | 8 |
(+)-Curcuphenol | −9.2 | LYS A: 466 | 1 | 0 | 3 |
Literature-Based Ligands Effective against Lanosterol 14 Alpha Demethylase | |||||
Pramiconazole | −11.0 | - | - | - | - |
12,28-Oxamanzamine A | −10.9 | - | - | - | - |
Fascioquinol D | −10.8 | - | - | - | - |
Saperconazole | −10.8 | - | - | - | - |
Fascioquinol C | −10.4 | - | - | - | - |
Drugs | |||||
Amphotericin B | 44.2 | ASP A: 176, ASN A: 503, PRO A: 501 | 3 | 1 | 2 |
Isavuconazole | −9.0 | None | 0 | 0 | 8 |
Posaconazole | −8.8 | LYS A: 466, SER A: 147 | 2 | 1 | 6 |
Fungal Lipase | |||||
---|---|---|---|---|---|
Ligands | Binding Affinity (kcal/mol) | H Bond Residues | H Bonds | C-H Bonds | Hydrophobic Bonds |
(+)-Curcudiol | −5.6 | ASN A: 144 | 1 | 0 | 6 |
(+)-Curcuphenol | −8.0 | ASN A: 144 | 1 | 0 | 5 |
Drugs | |||||
Amphotericin B | −7.4 | GLN A: 100, ASN A: 46, PRO A: 162, ASN A: 196, LYS A: 42 | 5 | 0 | 0 |
Isavuconazole | −6.7 | ASP A: 217, VAL A: 216 | 2 | 2 | 3 |
Posaconazole | −7.8 | GLN A: 100, TYR A: 78 | 2 | 4 | 4 |
Top-Ranking Complexes | ||
---|---|---|
Targets | Ligands | Binding Affinity (Kcal/mol−1) |
CotH3 | Hyrtimomine A | −9.0 |
Mucoricin | Latrunculin A | −8.6 |
exo-1,3-beta-glucan synthase | Aurantoside I | −11.4 |
RdRp | Naamine D | −8.8 |
Rhizopuspepsin | Latrunculin S | −9.8 |
Lanosterol 14 alpha demethylase | (+)-Curcudiol | −11.4 |
Fungal lipase | (+)-Curcuphenol | −8.0 |
Drug-like Physicochemical Properties | ||||||
---|---|---|---|---|---|---|
Ligands | Mol. Weight (g/mol) | Rotatable Bonds | H Bond Donors | H Bond Acceptors | C Log p | TPSA |
MW ≤ 500 | RB ≤ 10 | HBD ≤ 5 | HBA ≤ 10 | Log p ≤ 5 | (Å2) ≤ 140 | |
Hyrtimomine A | 313.31 | 0 | 3 | 3 | 3.36 | 77.84 |
Latrunculin A | 421.55 | 1 | 2 | 5 | 2.88 | 110.16 |
Aurantoside I | 757.18 | 13 | 7 | 15 | −0.53 | 257.23 |
Naamine D | 323.39 | 6 | 2 | 3 | 3.05 | 73.16 |
Latrunculin S | 423.57 | 3 | 3 | 5 | 2.88 | 121.16 |
(+)-Curcudiol | 236.35 | 5 | 2 | 2 | 3.54 | 40.46 |
(+)-Curcuphenol | 218.33 | 4 | 1 | 1 | 4.29 | 20.23 |
Drugs | ||||||
Amphotericin B | 924.08 | 3 | 12 | 18 | −0.39 | 319.61 |
Isavuconazole | 437.47 | 6 | 1 | 7 | 3.82 | 115.86 |
Posaconazole | 700.78 | 12 | 1 | 9 | 4.37 | 115.7 |
Swiss-ADME Analysis | ||||
---|---|---|---|---|
Ligands | Water Solubility | Bioavailability | GI Absorption | BBB Permeant |
Hyrtimomine A | Poor | 0.55 | High | No |
Latrunculin A | Soluble | 0.55 | High | No |
Aurantoside I | Soluble | 0.11 | Low | No |
Naamine D | Poor | 0.55 | High | Yes |
Latrunculin S | Soluble | 0.55 | High | No |
(+)-Curcudiol | Moderate | 0.55 | High | Yes |
(+)-Curcuphenol | Moderate | 0.55 | High | Yes |
Drugs | ||||
Amphotericin B | Soluble | 0.17 | Low | No |
Isavuconazole | Poor | 0.55 | Low | No |
Posaconazole | Poor | 0.17 | High | No |
OSIRIS | |||||||
---|---|---|---|---|---|---|---|
Ligands | Irritant Potential | Mutagenic Potential | Tumorigenic Potential | Reproductive Effectivity | Drug Score | Drug Likeness | |
Risk Level | Score | Yes/No | |||||
Hyrtimomine A | Low risk | Low risk | Low risk | Low risk | 0.40 | 0.79 | Yes |
Latrunculin A | Low risk | Low risk | Low risk | Low risk | 0.29 | −9.88 | No |
Aurantoside I | High risk | Low risk | Low risk | High risk | 0.17 | 2.11 | Yes |
Naamine D | Low risk | Low risk | Low risk | Low risk | 0.68 | 1.69 | Yes |
Latrunculin S | Low risk | Low risk | Low risk | Low risk | 0.30 | −9.72 | No |
(+)-Curcudiol | Low risk | Low risk | Low risk | Low risk | 0.39 | −5.06 | No |
(+)-Curcuphenol | High risk | Low risk | Low risk | Low risk | 0.20 | −5.62 | No |
Drugs | |||||||
Amphotericin B | Low risk | Low risk | Low risk | Low risk | 0.27 | −0.14 | No |
Isavuconazole | Low risk | Low risk | Low risk | Low risk | 0.27 | −3.87 | No |
Posaconazole | Low risk | High risk | High risk | Low risk | 0.09 | 4.68 | Yes |
ProTox-II | PkCSM Toxicity Analysis | ||||
---|---|---|---|---|---|
Ligands | LD50 Value (mg/kg) | Toxicity Class | Hepatotoxicity | T. pyriformis (log μg/L) | Minnow (log mM) |
Hyrtimomine A | 400 | 4 | Yes | 0.285 | 0.191 |
Latrunculin A | 560 | 4 | Yes | 0.313 | 2.123 |
Aurantoside I | 5000 | 5 | Yes | 0.285 | 9.082 |
Naamine D | 350 | 4 | No | 0.285 | 0.527 |
Latrunculin S | 1000 | 4 | Yes | 0.295 | 2.304 |
(+)-Curcudiol | 4000 | 5 | No | 1.468 | 0.175 |
(+)-Curcuphenol | 1500 | 4 | No | 1.876 | −0.277 |
Drugs | |||||
Amphotericin B | 100 | 3 | No | 0.285 | 11.261 |
Isavuconazole | 1000 | 4 | Yes | 0.286 | 1.727 |
Posaconazole | 320 | 4 | Yes | 0.285 | −2.621 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharkar, O.; Lakshmanan, H.; Zyryanov, G.; Tsurkan, M. In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis. Mar. Drugs 2022, 20, 215. https://doi.org/10.3390/md20030215
Pokharkar O, Lakshmanan H, Zyryanov G, Tsurkan M. In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis. Marine Drugs. 2022; 20(3):215. https://doi.org/10.3390/md20030215
Chicago/Turabian StylePokharkar, Omkar, Hariharan Lakshmanan, Grigory Zyryanov, and Mikhail Tsurkan. 2022. "In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis" Marine Drugs 20, no. 3: 215. https://doi.org/10.3390/md20030215
APA StylePokharkar, O., Lakshmanan, H., Zyryanov, G., & Tsurkan, M. (2022). In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis. Marine Drugs, 20(3), 215. https://doi.org/10.3390/md20030215