Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis
"> Figure 1
<p>The consort diagram. Seventy patients were enrolled into the initial evaluation of the study. Sixteen patients were excluded owing to the possible bias from autoimmune hepatitis, seafood allergy and diabetes medication and twelve patients declined to participate. Forty-two patients were randomized into low-molecular weight fucoidan and high-stability fucoxanthin (LMF-HSFx) and placebo group.</p> "> Figure 2
<p>LMF-HSFx attenuates hepatic lipotoxicity in patients with nonalcoholic fatty liver disease. The graph demonstrated the change from baseline of (<b>A</b>) Alanine transaminase, ALT; (<b>B</b>) Aspartate aminotransferase, AST; (<b>C</b>) total cholesterol, TC; (<b>D</b>) triglyceride, TG; Significant reduction of ALT, AST, TC and TG were observed at 6th month in LMF-HSFx group (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, compared with placebo).</p> "> Figure 3
<p>LMF-HSFx attenuates hepatic steatosis and fibrosis in patients with NAFLD. The graph demonstrated the change from baseline of (<b>A</b>) controlled attenuation parameter, CAP; (<b>B</b>) stiffness of patients with LMF-HSFx or placebo treatment. Significant reduction of CAP was observed at 6th month and significant reduction of stiffness was observed at 3rd and 6th month in LMF-HSFx group (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, compared with placebo).</p> "> Figure 4
<p>LMF-HSFx attenuates the NAFLD-induced inflammation and modulate adipogenesis. The graph demonstrated the change from baseline of serum (A) IL-6, (<b>B</b>) IFN-γ, (<b>C</b>) adiponectin and (<b>D</b>) leptin of patients with LMF-HSFx or placebo treatment. Significant reduction of IL-6 and IFN-γ change was observed at 3rd and 6th month in LMF-HSFx group (*** <span class="html-italic">p</span> < 0.001, compared with placebo). The significant increasing of leptin was observed at 6th month in LMF-HSFx group (** <span class="html-italic">p</span> < 0.01, compared with placebo).</p> "> Figure 5
<p>LMF-HSFx reduces the insulin resistance in patients with NAFLD. The graph demonstrated the change from baseline of (<b>A</b>) AC, (<b>B</b>) HbA1c, (<b>C</b>) insulin, (<b>D</b>) HOMA-IR and (<b>E</b>) the insulin secretion index (beta cell function index) of patients with LMF-HSFx or placebo treatment. Significant reduction of AC, HbA1c change was observed at 3rd and 6th month in LMF-HSFx group (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, compared with placebo). (<b>D</b>) The average HOMA-IR of placebo not LMF-HSFx group was higher than 3.5 at 6th month. (<b>E</b>) The increasing of beta cell function index in LMF-HSFx group during the 6 months.</p> "> Figure 6
<p>LMF-HSFx inhibits hepatic lipotoxicity in liver tissues of mice fed with high-fat diet. (<b>A</b>) Liver sections stained with Hematoxylin-eosin (HE) from high-fat diet (HFD) mice or normal diet (ND) mice with or without LMF-HSFx treatment. The HE staining of liver sections was performed at 16th week from ND mice or HFD mice with or without orally gavaged LMF-HSFx (400 mg/kg/BW/day). Scale bar: 100 μm. (<b>B</b>) LMF-HSFx decreases the volume of lipid droplet in HFD mice liver. The differential distribution of lipid droplets in HE stained-liver tissues of HFD mice with or without 400 mg/kg/BW/day LMF-HSFx treatment after 16 weeks. The <span class="html-italic">X</span>-axis is the lipid droplets diameter and <span class="html-italic">Y</span>-axis is the total lipid droplet numbers in 10 HE stained-liver images from one mouse, <span class="html-italic">n</span> = 3 mice. <span class="html-italic">X</span>-axis unit: 10<sup>3</sup> pixel and <span class="html-italic">Y</span>-axis unit: the total lipid droplet numbers in 10 images of each area 2560 × 1922 pixel<sup>2</sup>. (<b>C</b>) The blood glucose (mg/dL, dL: 100 mL), (<b>D</b>) triglyceride (mg/dL), (<b>E</b>) AST (U/L) and (<b>F</b>) ALT (U/L) concertation in ND or HFD mice with or without 200 or 400 mg/kg/BW/day LMF-HSFx treatment through oral gavage after 16 weeks (<sup>#</sup> <span class="html-italic">p</span> < 0.05, compared with DN mice; * <span class="html-italic">p</span> < 0.05, compared with HFD mice).</p> "> Figure 7
<p>LMF-HSFx modulates SIRT-PGC-1 axis in palmitic acid-treated HepaRG hepatocytes. LMF-HSFx restored palmitic acid-induced SIRT2, 3, 6, PGC-1β and ATGL degradation. The HepaRG cells were cultured in PA 200 or 400 μM with or without LMF-HSFx 25 μg/mL. Representative Western blots of (<b>A</b>) SIRT-1, 2, 3, 4, 6, control protein GAPDH; (<b>C</b>) PGC-1α, PGC-1β, ATGL and GAPDH. Summarized bar graphs depicting the protein level of (<b>B</b>) SIRT-1, 2, 3, 4, 6; (<b>D</b>) PGC-1α, PGC-1β, ATGL. Each column represents mean ± SEM, taking the control group as 100% (* <span class="html-italic">p</span> < 0.05 compared with control; <sup>#</sup> <span class="html-italic">p</span> < 0.05, compared with PA200 group).</p> "> Figure 8
<p>LMF-HSFx ameliorates PA-induced early apoptosis and cellular mitochondrial disruption in HepaRG cells. (<b>A</b>) the early apoptosis by Annexin V/PI stain and (<b>B</b>) mitochondrial disruption apoptosis by JC-1 labeling on flow cytometer of the HepRG cells in PA 200 or 400 μM with or without LMF-HSFx 25 μg/mL, LMF-HSFx 25 μg/mL and untreated control groups. (<b>C</b>) summarized bars depicting the differentiation percentage of apoptotic cells in groups by Annexin V/PI stain, taking total cells as 100%. (<b>D</b>) summarized bars depicting the Green/red fluorescence ratio in groups by JC-1 labeling, taking control group cells as 1fold (* <span class="html-italic">p</span> < 0.05, compared with control; <sup>#</sup> <span class="html-italic">p</span> < 0.05, compared with PA200 group; <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05, compared with PA400 group).</p> "> Figure 9
<p>The work mechanism of LMF-HSFx for NAFLD. LMF-HSFx targets Adipocytes and hepatocytes. In adipose tissue, LMF-HSFx decreases the insulin resistance and enhances the Adiponectin and Leptin expression. In hepatocyte, LMF-HSFx directly activates SIRT-PGC1 axis and PGC-1 family expression. Combination with the stimulation effects from Adiponectin and Leptin, the SIRT-PGC1 axis mediated mitochondrial function and fatty acid oxidation are activated by LMF-HSFx but gluconeogenesis and De novo lipogenesis are inhibited by LMF-HSFx. LMF-HSFx also decreases the pro-inflammatory cytokine (IL6 and INFγ) release from hepatocyte and suppresses the fibrosis in NAFLD.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Low-Molecular Weight Fucoidan Plus High-Stability Fucoxanthin (LMF-HSFx) Attenuates Hepatic Lipotoxicity in Patients with NAFLD in Randomized Controlled Clinical Trial
2.2. LMF-HSFx Reduces the Hepatic Steatosis and Fibrosis in Patients with NAFLD in Clinical Trial
2.3. LMF-HSFx has the Potential to Attenuate the NAFLD-Induced Inflammation and Modulate Adipogenesis in Clinical Trial
2.4. LMF-HSFx has the Potential to Reduce the Insulin Resistance in Patients with NAFLD in Clinical Trial
2.5. LMF-HSFx Attenuates Hepatic Lipotoxicity and Modulates Adipogenesis in Mice Fed with High-Fat Diet
2.6. LMF-HSFx Modulates PGC-1-Medicated Pathways in Palmitic Acid-Treated HepaRG Hepatocytes
2.7. LMF-HSFx Ameliorates PA-Induced Early Apoptosis and Cellular Mitochondrial Disruption in HepaRG Cells
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Clinical Trial Design
4.3. Animal Design
4.4. Adipogenesis RT2 Profiler PCR Array
4.5. Cell Culture
4.6. Annexin V/Propidium Iodide (PI) Double Staining Assay
4.7. Mitochondrial Membrane Potential (ΔΨm) Evaluation
4.8. Western Blot Analysis
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araujo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. Off. J. Int. Assoc. Study Liver 2018, 38 (Suppl. 1), 47–51. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Wong, R.J.; Harrison, S.A. Nonalcoholic Fatty Liver Disease Review: Diagnosis, Treatment, and Outcomes. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2015, 13, 2062–2070. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.T.; Francque, S.; Staels, B. Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease. Annu. Rev. Physiol. 2016, 78, 181–205. [Google Scholar] [CrossRef]
- Kumar, S.A.; Magnusson, M.; Ward, L.C.; Paul, N.A.; Brown, L. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats. Mar. Drugs 2015, 13, 788–805. [Google Scholar] [CrossRef]
- Vaamonde-García, C.; Flórez-Fernández, N.; Torres, M.D.; Lamas-Vázquez, M.J.; Blanco, F.J.; Domínguez, H.; Meijide-Faílde, R. Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis. Carbohydr. Polym. 2021, 258, 117692. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Sanjeewa, K.K.A.; Nagahawatta, D.P.; Lee, H.G.; Lu, Y.A.; Vaas, A.; Abeytunga, D.T.U.; Nanayakkara, C.M.; Lee, D.S.; Jeon, Y.J. Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum Swartzii in Macrophages via Blocking TLR/NF-Κb Signal Transduction. Mar. Drugs 2020, 18, 601. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of Bioactivities of Fucoidan from the Brown Seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Luthuli, S.; Wu, S.; Cheng, Y.; Zheng, X.; Wu, M.; Tong, H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar. Drugs 2019, 17, 487. [Google Scholar] [CrossRef] [Green Version]
- Gammone, M.A.; D’Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef]
- Muradian, K.; Vaiserman, A.; Min, K.J.; Fraifeld, V.E. Fucoxanthin and lipid metabolism: A minireview. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 891–897. [Google Scholar] [CrossRef]
- Pu, K.; Wang, Y.; Bai, S.; Wei, H.; Zhou, Y.; Fan, J.; Qiao, L. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: A systematic review and meta-analysis. BMC Gastroenterol. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, S.A.; Alavian, S.M.; Gholami-Fesharaki, M. Assessment of transient elastography (FibroScan) for diagnosis of fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Casp. J. Intern. Med. 2016, 7, 242–252. [Google Scholar]
- Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to NASH. Transplantation 2019, 103, e1–e13. [Google Scholar] [CrossRef] [PubMed]
- Dyck, D.J.; Heigenhauser, G.J.; Bruce, C.R. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol. (Oxf. Engl.) 2006, 186, 5–16. [Google Scholar] [CrossRef]
- Fruhbeck, G.; Catalan, V.; Rodriguez, A.; Ramirez, B.; Becerril, S.; Salvador, J.; Portincasa, P.; Colina, I.; Gomez-Ambrosi, J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci. Rep. 2017, 7, 6619. [Google Scholar] [CrossRef]
- Breda, E.; Cavaghan, M.K.; Toffolo, G.; Polonsky, K.S.; Cobelli, C. Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity. Diabetes 2001, 50, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Sathyanarayan, A.; Mashek, M.T.; Ong, K.T.; Wollaston-Hayden, E.E.; Mashek, D.G. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-alpha signaling. Diabetes 2015, 64, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Oropeza, D.; Jouvet, N.; Bouyakdan, K.; Perron, G.; Ringuette, L.J.; Philipson, L.H.; Kiss, R.S.; Poitout, V.; Alquier, T.; Estall, J.L. PGC-1 coactivators in beta-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids. Mol. Metab. 2015, 4, 811–822. [Google Scholar] [CrossRef]
- Boutari, C.; Mantzoros, C.S. Adiponectin and leptin in the diagnosis and therapy of NAFLD. Metab. Clin. Exp. 2020, 103, 154028. [Google Scholar] [CrossRef]
- Ren, T.; Zhu, L.; Shen, Y.; Mou, Q.; Lin, T.; Feng, H. Protection of hepatocyte mitochondrial function by blueberry juice and probiotics via SIRT1 regulation in non-alcoholic fatty liver disease. Food Funct. 2019, 10, 1540–1551. [Google Scholar] [CrossRef] [Green Version]
- Raffaele, M.; Bellner, L.; Singh, S.P.; Favero, G.; Rezzani, R.; Rodella, L.F.; Falck, J.R.; Abraham, N.G.; Vanella, L. Epoxyeicosatrienoic intervention improves NAFLD in leptin receptor deficient mice by an increase in PGC1α-HO-1-PGC1α-mitochondrial signaling. Exp. Cell Res. 2019, 380, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Sugden, M.C.; Caton, P.W.; Holness, M.J. PPAR control: It’s SIRTainly as easy as PGC. J. Endocrinol. 2010, 204, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Puigserver, P.; Donovan, J.; Tarr, P.; Spiegelman, B.M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 2002, 277, 1645–1648. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Yang, R.; Tarr, P.T.; Wu, P.H.; Handschin, C.; Li, S.; Yang, W.; Pei, L.; Uldry, M.; Tontonoz, P.; et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 2005, 120, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Sonoda, J.; Laganière, J.; Mehl, I.R.; Barish, G.D.; Chong, L.W.; Li, X.; Scheffler, I.E.; Mock, D.C.; Bataille, A.R.; Robert, F.; et al. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev. 2007, 21, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Liu, T.; Wang, Z.; Xu, Y.; Zhang, Q.; Luo, D. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int. J. Biol. Macromol. 2018, 112, 929–936. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and Tissue Distribution of Fucoidan from Fucus vesiculosus after Oral Administration to Rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T.; Ozaki, Y.; Taminato, M.; Das, S.K.; Mizuno, M.; Yoshimura, K.; Maoka, T.; Kanazawa, K. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br. J. Nutr. 2009, 102, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.V.; Tsou, Y.C.; Chen, Y.T.; Lu, W.J.; Hwang, P.A. Effects of Low-Molecular-Weight Fucoidan and High Stability Fucoxanthin on Glucose Homeostasis, Lipid Metabolism, and Liver Function in a Mouse Model of Type II Diabetes. Mar. Drugs 2017, 15, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, S.; Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Yagi, K. Fucoidan partly prevents CCl4-induced liver fibrosis. Eur. J. Pharmacol. 2008, 580, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Takatani, N.; Kono, Y.; Beppu, F.; Okamatsu-Ogura, Y.; Yamano, Y.; Miyashita, K.; Hosokawa, M. Fucoxanthin inhibits hepatic oxidative stress, inflammation, and fibrosis in diet-induced nonalcoholic steatohepatitis model mice. Biochem. Biophys. Res. Commun. 2020, 528, 305–310. [Google Scholar] [CrossRef]
- Nieto, N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 2006, 44, 1487–1501. [Google Scholar] [CrossRef]
- Loomba, R.; Abraham, M.; Unalp, A.; Wilson, L.; Lavine, J.; Doo, E.; Bass, N.M. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 2012, 56, 943–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugianesi, E.; McCullough, A.J.; Marchesini, G. Insulin resistance: A metabolic pathway to chronic liver disease. Hepatology 2005, 42, 987–1000. [Google Scholar] [CrossRef]
- Tilg, H. The role of cytokines in non-alcoholic fatty liver disease. Dig. Dis. 2010, 28, 179–185. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heeba, G.H.; Morsy, M.A. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease. Environ. Toxicol. Pharmacol. 2015, 40, 907–914. [Google Scholar] [CrossRef]
- Ji, Y.; Yin, Y.; Li, Z.; Zhang, W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2019, 11, 1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.E.; Parnell, J.A.; Eksteen, B.; Raman, M.; Bomhof, M.R.; Rioux, K.P.; Madsen, K.L.; Reimer, R.A. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: A randomized controlled trial protocol. BMC Gastroenterol. 2015, 15, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.H.; Chengchuan Ko, E.; Chang, C.L.; Yuan, K.S.; Wu, A.T.H.; Shan, Y.S.; Wu, S.Y. Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues. Mar. Drugs 2018, 16, 392. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Phan, N.N.; Lu, W.J.; Ngoc Hieu, B.T.; Lin, Y.C. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells. Food Nutr. Res. 2016, 60, 32033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recena Aydos, L.; Aparecida do Amaral, L.; Serafim de Souza, R.; Jacobowski, A.C.; Freitas Dos Santos, E.; Rodrigues Macedo, M.L. Nonalcoholic Fatty Liver Disease Induced by High-Fat Diet in C57bl/6 Models. Nutrients 2019, 11, 3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Shiue, S.J.; Rau, R.H.; Shiue, H.S.; Hung, Y.W.; Li, Z.X.; Yang, K.D.; Cheng, J.K. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain 2019, 160, 210–223. [Google Scholar] [CrossRef] [PubMed]
Adipogenesis Regulation | |||||||
---|---|---|---|---|---|---|---|
Total Adipose Tissue | In White Adipose Tissue Only | In Pro-Brown Adipose Tissue Only | |||||
Gene | Fold * | Gene | Fold * | Gene | Fold * | Gene | Fold * |
Adig | 4.2 | Runx1t1 | 14.9 | Gata2 | 10.2 | Creb1 | 16.8 |
Adipoq | 13.8 | Shh | 5.8 | Klf3 | 13.4 | Foxc2 | 9.9 |
Lep | 6.7 | Sirt1 | 18.5 | Insr | 11.3 | ||
Retn | 8.2 | Sirt2 | 9.3 | Irs1 | 12.9 | ||
Agt | 39.2 | Ppara | 15.7 | ||||
Lipe | 6.6 | Ppard | 9.4 | ||||
Adrb2 | 8.7 | ||||||
Lrp5 | 11.3 | ||||||
Ncor2 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, P.-H.; Shiue, S.-J.; Chen, C.-N.; Cheng, S.-W.; Lin, H.-Y.; Wu, L.-W.; Wu, M.-S. Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis. Mar. Drugs 2021, 19, 148. https://doi.org/10.3390/md19030148
Shih P-H, Shiue S-J, Chen C-N, Cheng S-W, Lin H-Y, Wu L-W, Wu M-S. Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis. Marine Drugs. 2021; 19(3):148. https://doi.org/10.3390/md19030148
Chicago/Turabian StyleShih, Ping-Hsiao, Sheng-Jie Shiue, Chun-Nan Chen, Sheng-Wei Cheng, Hsin-Yi Lin, Li-Wei Wu, and Ming-Shun Wu. 2021. "Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis" Marine Drugs 19, no. 3: 148. https://doi.org/10.3390/md19030148
APA StyleShih, P.-H., Shiue, S.-J., Chen, C.-N., Cheng, S.-W., Lin, H.-Y., Wu, L.-W., & Wu, M.-S. (2021). Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis. Marine Drugs, 19(3), 148. https://doi.org/10.3390/md19030148