Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08
<p>Phylogenetic tree of strain SY08 and related bacteria. The tree ID is based on a maximum parsimony analysis of the 16S rDNA sequences. The obtained 16S rDNA sequence was searched for and aligned by using the BLASTn and ClustalX programs, respectively. The phylogenetic tree was obtained by using MEGA 4.0 software.</p> "> Figure 2
<p>SDS-PAGE analysis of purified AlySY08. The purified AlySY08 was resolved by 10% acrylamide (<span class="html-italic">w</span>/<span class="html-italic">v</span>) SDS-PAGE followed by staining with Coomassie Blue G-250. Lane M, molecular weight markers; Lane 1, purified AlySY08.</p> "> Figure 3
<p>Effects of pH and temperature on the activity and stability of AlySY08. (<b>a</b>) The optimum pH for AlySY08 was determined by measuring its activity at 40 °C in 50 mM Na<sub>2</sub>HPO<sub>4</sub>-citric acid buffer (filled circle), 50 mM Na<sub>2</sub>HPO<sub>4</sub>-NaH<sub>2</sub>PO<sub>4</sub> buffer (open circle), 50 mM Tris-HCl buffer (filled triangle) and 50 mM Gly-NaOH buffer (filled square); (<b>b</b>) The optimal temperature for AlySY08 was determined by measuring its activity at various temperatures (10–60 °C); (<b>c</b>) pH stability of AlySY08. The residual activity was measured at 40 °C in 50 mM phosphate buffer (pH 7.6) after incubation in the buffers reported above at 4 °C for 6 h; (<b>d</b>) Thermostability of AlySY08. The enzyme was incubated at 30 °C (filled circle), 40 °C (open rhombus), 45 °C (open square) and 50 °C (filled triangle) for various times. The residual activity was then determined at 40 °C. The activity of control (100% relative activity) is 12.6 U/mL.</p> "> Figure 4
<p>Effect of NaCl on enzymatic activity of AlySY08. The activity of AlySY08 in the absence of NaCl was retained at 100%. All the experiments were conducted in triplicate.</p> "> Figure 5
<p>Size-exclusion chromatography of the alginate degradation products by AlySY08. The elution volumes of the dimer (DP2), trimer (DP3), tetramer (DP4), and pentamer (DP5) are 16.1 mL, 14.9 mL, 14.1 mL and 13.7 mL, respectively. The ratios of dimers present in the degradation products were analyzed by the peak integration function on the UNICORN 5.31 software (GE Healthcare, Madison, WI, USA).</p> "> Figure 6
<p>TLC and ESI-MS analysis of the main products of AlySY08. (<b>a</b>) TLC analysis. The reaction products were separated on a HPTLC plate with <span class="html-italic">n</span>-butanol/formic acid/water (2:1:1, by vol) and visualized with a diphenylamine/aniline/phosphate reagent. Lane M: standard UAOs mixture, disaccharide (DP2) and trisaccharide (DP3); Lane 0 sodium alginate; Lane 1 reaction products; (<b>b</b>) ESI-MS analysis of the main products by AlySY08.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of Strain SY08
2.2. Purification and Biochemical Characterization of AlySY08
2.3. Substrate Specificity and Kinetic Parameters of AlySY08
2.4. Mode of Enzyme Action and Reaction Products of AlySY08
3. Materials and Methods
3.1. Isolation and Identification of Strain SY08
3.2. Purification of AlySY08
3.3. Alginate Lyase Activity Assay
3.4. Effects of Temperature, pH, Metal Ions and Chelators
3.5. Enzymatic Kinetic Parameters Assay
3.6. Analysis of Reaction Mode and Products
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Momoh, F.U.; Boateng, J.S.; Richardson, S.C.; Chowdhry, B.Z.; Mitchell, J.C. Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. Int. J. Biol. Macromol. 2015, 81, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and application. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
- Enquist-Newman, M.; Faust, A.M.; Bravo, D.D.; Santos, C.N.; Raisner, R.M.; Hanel, A.; Sarvabhowman, P.; Le, C.; Regitsky, D.D.; Cooper, S.R.; et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 2014, 505, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Wargacki, A.J.; Leonard, E.; Win, M.N.; Regitsky, D.D.; Santos, C.N.; Kim, P.B.; Cooper, S.R.; Raisner, R.M.; Herman, A.; Sivitz, A.B.; et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 2012, 335, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Formo, K.; Aarstad, O.A.; Skjåk-Bræk, G.; Strand, B.L. Lyase-catalyzed degradation of alginate in the gelled state: Effect of gelling ions and lyase specificity. Carbohydr. Polym. 2014, 110, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Chu, Y.J.; Park, C.H.; Lee, E.Y.; Kim, H.S. Site-directed mutagenesis-based functional analysis and characterization of endolytic lyase activity of N- and C-terminal domains of a novel oligoalginate lyase from Sphingomonas sp. MJ-3 possessing exolytic lyase activity in the intact enzyme. Mar. Biotechnol. 2015, 17, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.; Preston, L.; Schiller, N. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 2000, 54, 289–340. [Google Scholar] [CrossRef] [PubMed]
- Falkeborg, M.; Cheong, L.Z.; Gianfico, C.; Sztukiel, K.M.; Kristensen, K.; Glasius, M.; Xu, X.; Guo, Z. Alginate oligosaccharides: Enzymatic preparation and antioxidant property evaluation. Food Chem. 2014, 164, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Hiroki, T.; Takeshita, S.; Jiang, Z.D.; Kim, D.; Yamaguchi, K.; Oda, T. Comparative study on antioxidative and macrophage-stimulating activities of polyguluronic acid (PG) and polymannuronic acid (PM) prepared from alginate. Carbohydr. Res. 2012, 352, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Küpper, F.C.; Müller, D.G.; Peters, A.F.; Kloareg, B.; Potin, P. Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of laminariales. J. Chem. Ecol. 2002, 28, 2057–2081. [Google Scholar] [CrossRef] [PubMed]
- Trommer, H.; Neubert, R.H. The examination of polysaccharides as potential antioxidative compounds for topical administration using a lipid model system. Int. J. Pharm. 2005, 298, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Jiang, X.L.; Jiang, Y.H.; Hu, X.K.; Mou, H.J.; Li, M.; Guan, H. In vitro antioxidative activities of three marine oligosaccharides. Nat. Prod. Res. 2007, 21, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.X.; Xu, J.; Ding, Y.T. Alginate-derived oligosaccharides product by alginate lyase and detection of the antioxidant activity. Food. Fement. Ind. 2014. [Google Scholar] [CrossRef]
- Wang, L.N.; Li, S.Y.; Yu, W.G.; Gong, Q.H. Cloning, overexpression and characterization of a new oligoalginate lyase from a marine bacterium, Shewanella sp. Biotechnol. Lett. 2015, 37, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Wang, L.N.; Han, F.; Gong, Q.H.; Yu, W.G. Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine Shewanella sp. Kz7. J. Biochem. 2015. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, C.G.; Lee, E.Y. Alginate lyase: Structure, property, and application. Biotechnol. Bioprocess Eng. 2011, 16, 843–851. [Google Scholar] [CrossRef]
- Dou, W.F.; Wei, D.; Li, H.; Rahman, M.M.; Shi, J.S.; Xu, Z.H.; Xu, Z.; Ma, Y. Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr. Polym. 2013, 98, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Han, W.J.; Gu, J.Y.; Cheng, Y.Y.; Liu, H.H.; Li, Y.Z.; Li, F.C. A novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium Flammeovirga sp. MY04: Effects of module truncation to the biochemical characteristics, alginate-degradation patterns, and oligosaccharide-yielding properties. Appl. Environ. Microbiol. 2015, 82, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.K.; Jiang, X.L.; Hwang, H.M. Purification and characterization of an alginate lyase from marine bacterium Vibrio sp. mutant strain 510-64. Curr. Microbiol. 2006, 53, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Ertesvåg, H. Alginate-modifying enzymes: Biological roles and biotechnological uses. Front. Microbiol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.Y.; Yang, X.M.; Bao, M.M.; Yu, W.G.; Han, F. Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS. Microb. Lett. 2015. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Yang, X.M.; Zhang, L.; Yu, W.G.; Han, F. Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marine bacterium Agarivorans sp. L11. J. Microbiol. Biotechnol. 2015, 25, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Lundqvist, L.C.; Jam, M.; Jeudy, A.; Barbeyron, T.; Sandström, C.; Michel, G.; Czjzek, M. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J. Biol. Chem. 2013, 288, 23021–23037. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, E.W.; Yu, W.G.; Han, F. Purification and characterization of a new alginate lyase from marine bacterium Vibrio sp. Biotechnol. Lett. 2013, 35, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Swift, S.M.; Hudgens, J.W.; Heselpoth, R.D.; Bales, P.M.; Nelson, D.C. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS ONE 2014, 9, e112939. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.W.; Tan, H.D.; Qin, Y.Q.; Xu, Q.S.; Du, Y.G.; Yin, H. Characterization of a new endo-type alginate lyase from Vibrio sp. W13. Int. J. Biol. Macromol. 2015, 75, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Li, C.X.; Zhao, X.; Yu, G.L.; Guan, H.S. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method. Carbohydr. Res. 2013, 373, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.S.X.; Zhou, J.G.; Li, X.; Peng, Q.; Lu, H.; Du, Y.G. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol. 2013, 40, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Lee, E.Y.; Kim, H.S. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 2009, 11, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Dong, S.; Song, J.; Li, C.B.; Chen, X.L.; Xie, B.B.; Zhang, Y.-Z. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar. Drugs 2011, 9, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Uchimura, K.; Miyazaki, M.; Nogi, Y.; Hori-koshi, K. A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 2009, 13, 121–129. [Google Scholar] [CrossRef] [PubMed]
Substrate | Relative Activity (%) | Km (mg/mL) | Vmax (U/mg) |
---|---|---|---|
Sodium alginate | 100.0 ± 0.8 | 0.36 ± 0.04 | 1183.7 ± 21.5 |
PolyG blocks | 123.8 ± 2.8 | 0.34 ± 0.02 | 1255.5 ± 14.7 |
PolyM blocks | 28.2 ± 1.3 | 0.85 ± 0.16 | 512.9 ± 8.3 |
Enzyme | Source | Main Products (DP) | Ratio of Dimer (%) a | Reference |
---|---|---|---|---|
AlySY08 | Vibrio sp. SY08 | 2 | 81.4 | This study |
AlyL2-FL | Agarivorans sp. L11 | 2–3 | 64.6 | [22] |
AlyL2-CM | Agarivorans sp. L11 | 2–3 | 52.6 | [22] |
AlyL1 | Agarivorans sp. L11 | 2–3 | 47.3 | [23] |
MJ3-Arg236Ala | Sphingomonas sp. MJ-3 | 2–5 | 37.9 | [17] |
AlgMsp | Microbulbifer sp. 6532A | 2–5 | 37.5 | [26] |
AlyA1 | Zobellia galactanivorans | 2–6 | 19.0 | [24] |
Aly5 | Flammeovirga sp. MY04 | 2–7 | 15.7 | [19] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, L.; Hao, J.; Xing, M.; Sun, J.; Sun, M. Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08. Mar. Drugs 2017, 15, 1. https://doi.org/10.3390/md15010001
Li S, Wang L, Hao J, Xing M, Sun J, Sun M. Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08. Marine Drugs. 2017; 15(1):1. https://doi.org/10.3390/md15010001
Chicago/Turabian StyleLi, Shangyong, Linna Wang, Jianhua Hao, Mengxin Xing, Jingjing Sun, and Mi Sun. 2017. "Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08" Marine Drugs 15, no. 1: 1. https://doi.org/10.3390/md15010001
APA StyleLi, S., Wang, L., Hao, J., Xing, M., Sun, J., & Sun, M. (2017). Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08. Marine Drugs, 15(1), 1. https://doi.org/10.3390/md15010001