Slow Magnetic Relaxation of Lanthanide(III) Complexes with a Helical Ligand
"> Figure 1
<p>Structure of ligand L.</p> "> Figure 2
<p>ORTEP drawing of the cationic part of <b>3</b> at the 50% probability level. Hydrogen atoms were omitted for clarity: (<b>a</b>) top view and (<b>b</b>) side view of the molecule.</p> "> Figure 3
<p>Temperature dependence of the χ<sub>M</sub><span class="html-italic">T</span> products of <b>1</b> (open triangles), <b>2</b> (closed circles), and <b>3</b> (open circles) measured under an applied DC field of 1000 Oe.</p> "> Figure 4
<p>AC susceptibility data of <b>1</b> measured under 1000 Oe bias applied field: (<b>a</b>) frequency dependence of the products of temperature and in-phase susceptibility (<b>top</b>), and temperature and out-of-phase susceptibility (<b>bottom</b>), measured at several temperatures from 2.0 to 5.0 K; (<b>b</b>) Cole–Cole plots of <b>1</b> measured under the same conditions. Solid curves represent theoretical calculations on the basis of generalized Debye equations, of which the estimated parameters are listed in <a href="#app1-magnetochemistry-02-00043" class="html-app">Table S3</a>.</p> "> Figure 5
<p>(<b>a</b>) Frequency dependence of the out-of-phase component of AC susceptibility of <b>1</b> at 2.5 K measured under several DC field applied conditions; (<b>b</b>) DC field dependence of the relaxation rate τ<sup>−1</sup> measured in the temperature range 2.5–4.0 K.</p> "> Figure 6
<p>Arrhenius plot of <b>1</b> measured under an applied DC field of 1000 Oe. The black line is the result of the fitting to the linear Arrhenius equation, and the green curve is the result of fitting when simply Raman process was considered. The red and black curves represent the results of the fitting using Equation (3), which considers both thermally assisted QTM and Raman processes. The value of <span class="html-italic">n</span> in the Raman term was fixed at 5 for the red curve and 9 for the blue curve.</p> "> Figure 7
<p>AC susceptibility data of <b>2</b> measured under 1000 Oe bias applied field conditions in the temperature range 2.0–6.0 K and frequency range 10–10,000 Hz. Closed circles and open circles denote the value of χ<sub>M</sub>′<span class="html-italic">T</span> and χ<sub>M</sub>′′<span class="html-italic">T</span>, respectively.</p> "> Figure 8
<p>AC susceptibility data for <b>3</b>, measured under a 1000 Oe bias applied field: (<b>a</b>) frequency dependence of the products of temperature and in-phase susceptibility (<b>top</b>), and temperature and out-of-phase susceptibility (<b>bottom</b>), measured at several temperatures in the range 2.0–14.0 K; (<b>b</b>) Cole–Cole plots of <b>3</b> measured under the same conditions. Solid curves represent theoretical calculations on the basis of generalized Debye equations, of which the estimated parameters were listed in <a href="#app1-magnetochemistry-02-00043" class="html-app">Table S4</a>.</p> "> Figure 9
<p>AC susceptibility data for <b>3</b>, measured under several DC applied fields: (<b>a</b>) frequency dependence of out-of-phase susceptibility at 4.0 K, measured under several DC applied fields ranging from 0 to 5000 Oe. Solid curves represent theoretical calculations on the basis of Equation (2). (<b>b</b>) DC field dependence of the relaxation rate measured in the temperature range 3.0–7.0 K. Solid curves represent theoretical calculations on the basis of Equation (4).</p> "> Figure 10
<p>Arrhenius plot of <b>3</b>, measured under applied DC fields of (<b>a</b>) 500 Oe and (<b>b</b>) 1000 Oe. The solid lines and curves represent the results of the fitting based on the linear Arrhenius equation (black) and Raman process (green), and the fitting using Equation (3) with <span class="html-italic">n</span> values of 5 (red) and 9 (blue). The estimated parameters were listed in <a href="#app1-magnetochemistry-02-00043" class="html-app">Table S6</a>.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. DC Susceptibility of the Complexes
2.3. Dynamic Susceptibility of the Complexes
2.3.1. Nd(III) Complex 1
2.3.2. Tb(III) Complex 2
2.3.3. Dy(III) Complex 3
3. Discussion
4. Materials and Methods
4.1. General Procedures and Methods
4.2. Synthesis of Complexes [LnL(NO3)2]PF6·MeCN
4.3. Crystallography
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SMM | Single Molecule Magnet |
QTM | Quantum Tunneling of Magnetization |
TM | Thermally Assisted |
AC and DC | Alternating and Direct Current |
References
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: New York, NY, USA, 2006; pp. 47–159. [Google Scholar]
- Glaser, T. Rational design of single-molecule magnets: A supramolecular approach. Chem. Comm. 2011, 47, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Layfield, R.A. Organometallic Single-Molecule Magnets. Organometallics 2014, 33, 1084–1099. [Google Scholar] [CrossRef]
- Madhu, N.T.; Tang, J.-K.; Hewitt, I.J.; Clérac, R.; Wernsdorfer, W.; van Slageren, J.; Anson, C.E.; Powell, A.K. What makes a single molecule magnet? Polyhedron 2005, 24, 2864–2869. [Google Scholar] [CrossRef]
- Liddle, S.T.; Van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 2015, 24, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Feltham, H.L.C.; Brooker, S. Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1–33. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Y.-N.; Tang, J. Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord. Chem. Rev. 2013, 257, 1728–1763. [Google Scholar] [CrossRef]
- Woodru, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, D. Angular distribution of 4f electrons in the presence of a crystal field. J. Phys. 1986, 47, 677–681. [Google Scholar] [CrossRef]
- Walter, U. Charge Distributions of Crystal Field States. Z. Phys. B: Condens. Matter 1986, 62, 299–309. [Google Scholar] [CrossRef]
- Rinehart, J.R.; Long, J.R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2, 2078–2085. [Google Scholar] [CrossRef]
- Hasegawa, M.; Ohtsu, H.; Kodama, D.; Kasai, T.; Sakurai, S.; Ishii, A.; Suzuki, K. Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand. New J. Chem. 2014, 38, 1225–1234. [Google Scholar] [CrossRef]
- Takahara, C.; Then, P.L.; Kataoka, Y.; Nakano, M.; Yamamura, T.; Kajiwara, T. Slow magnetic relaxation of light lanthanidebased linear LnZn2 trinuclear complexes. Dalton Trans. 2015, 44, 18276–18283. [Google Scholar] [CrossRef] [PubMed]
- Hino, S.; Maeda, M.; Kataoka, Y.; Nakano, M.; Yamamura, T.; Kajiwara, T. SMM Behavior Observed in Ce(III)Zn(II)2 Linear Trinuclear Complex. Chem. Lett. 2013, 42, 1276–1278. [Google Scholar] [CrossRef]
- Hino, S.; Maeda, M.; Yamashita, K.; Kataoka, Y.; Nakano, M.; Yamamura, T.; Nojiri, H.; Kofu, M.; Yamamuro, O.; Kajiwara, T. Linear Trinuclear Zn(II)–Ce(III)–Zn(II) Complex which Behaves as Single-molecule Magnet. Dalton Trans. 2013, 42, 2683–2686. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, J.J.; Gorelsky, S.I.; Korobkov, I.; Murugesu, M. Slow Magnetic Relaxation in Uranium(III) and Neodymium(III) Cyclooctatetraenyl Complexes. Organometallics 2015, 34, 1415–1418. [Google Scholar] [CrossRef]
- Singh, S.K.; Gupta, T.; Ungur, L.; Rajaraman, G. Magnetic Relaxation in Single-Electron Single-Ion Cerium(III) Magnets: Insights from Ab Initio Calculations. Chem. Eur. J. 2015, 21, 13812–13819. [Google Scholar] [CrossRef] [PubMed]
- Habib, F.; Long, J.; Lin, P.-H.; Korobkov, I.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L.F.; Murugesu, M. Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chem. Sci. 2012, 3, 2158–2164. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Oxford University Press: Oxford, UK, 1970; pp. 60–74 and pp. 555–560. [Google Scholar]
- Carlin, R.L. Magnetochemistry; Springer: Berlin/Heidelberg, Germany, 1986; pp. 36–51. [Google Scholar]
- Vrábel, P.; Orendáč, M.; Orendáčová, A.; Čižmár, E.; Tarasenko, R.; Zvyagin, S.; Wosnitza, J.; Prokleška, J.; Sechovský, V.; Pavlík, V.; et al. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]·3H2O. J. Phys. Condens. Matter. 2013, 25, 186003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Duan, G.-P.; Sato, O.; Gao, S. Structures and magnetism of cyano-bridged grid-like two-dimensional 4f–3d arrays. J. Mater. Chem. 2006, 16, 2625–2634. [Google Scholar] [CrossRef]
- Ma, B.-Q.; Gao, S.; Su, G.; Xu, G.-X. Cyano-Briged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior. Angew. Chem. Int. Ed. 2001, 40, 434–437. [Google Scholar] [CrossRef]
- Crystal Clear, Version 1.3.5; Operating Software for the CCD Detector System; Rigaku and Molecular Structure Corp.: Tokyo, Japan; The Woodlands, TX, USA, 2003.
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wada, H.; Ooka, S.; Iwasawa, D.; Hasegawa, M.; Kajiwara, T. Slow Magnetic Relaxation of Lanthanide(III) Complexes with a Helical Ligand. Magnetochemistry 2016, 2, 43. https://doi.org/10.3390/magnetochemistry2040043
Wada H, Ooka S, Iwasawa D, Hasegawa M, Kajiwara T. Slow Magnetic Relaxation of Lanthanide(III) Complexes with a Helical Ligand. Magnetochemistry. 2016; 2(4):43. https://doi.org/10.3390/magnetochemistry2040043
Chicago/Turabian StyleWada, Hisami, Sayaka Ooka, Daichi Iwasawa, Miki Hasegawa, and Takashi Kajiwara. 2016. "Slow Magnetic Relaxation of Lanthanide(III) Complexes with a Helical Ligand" Magnetochemistry 2, no. 4: 43. https://doi.org/10.3390/magnetochemistry2040043
APA StyleWada, H., Ooka, S., Iwasawa, D., Hasegawa, M., & Kajiwara, T. (2016). Slow Magnetic Relaxation of Lanthanide(III) Complexes with a Helical Ligand. Magnetochemistry, 2(4), 43. https://doi.org/10.3390/magnetochemistry2040043