Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations
<p>Effect of nonlinear stiffness on the resonant frequency.</p> "> Figure 2
<p>SDOF of a vibration energy harvester with nonlinear stiffness and damping.</p> "> Figure 3
<p>A representation of the individual GALE contributions to the general output response of system (2).</p> "> Figure 4
<p>Graph of individual nth-order GALE contributions to the output response of system (2), at the fundamental frequency.</p> "> Figure 5
<p>Nth-order GALE contributions for N = 3, 5, 7, and 9 at <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 200, and <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0.300, 0.325, 0.350, 0.375, and 0.400.</p> "> Figure 6
<p>GALE-OFRF vs. numerical simulation results for the (<b>a</b>) output spectra and (<b>b</b>) average power, respectively, at <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0.45 and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 250.</p> "> Figure 6 Cont.
<p>GALE-OFRF vs. numerical simulation results for the (<b>a</b>) output spectra and (<b>b</b>) average power, respectively, at <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0.45 and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 250.</p> "> Figure 7
<p>GALE-OFRF vs. numerical simulation results for the (<b>a</b>) output spectra and (<b>b</b>) average power, respectively, at <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0.25 and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 270.</p> "> Figure 7 Cont.
<p>GALE-OFRF vs. numerical simulation results for the (<b>a</b>) output spectra and (<b>b</b>) average power, respectively, at <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0.25 and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 270.</p> "> Figure 8
<p>Effect of hardening stiffness on the (<b>a</b>) output spectrum and (<b>b</b>) average power of the nonlinear VEH system.</p> "> Figure 9
<p>Effect of the variation in hardening stiffness on the (<b>a</b>) output spectrum and (<b>b</b>) average power of the nonlinear VEH system.</p> "> Figure 10
<p>Effect of variation in cubic damping on the (<b>a</b>) output spectrum and (<b>b</b>) average power of the nonlinear VEH system.</p> "> Figure 11
<p>Output spectrum of system (2) against a variation in <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>Average power of the VEH device against a variation in <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>Output spectrum and average power of VEH for a variation in <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>≪</mo> <mn>1</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>≫</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Model Formulation
3. The Output Frequency Response Function (OFRF)
4. Determination of the OFRF Structure
5. Evaluation of the Generalised Associated Linear Equations (GALEs)
6. Determination of the OFRF Model Using the GALE Contributions
7. Results and Discussion
7.1. Effect of a Hardening Spring and Cubic Damping on the VEH System
7.2. Optimisation of an Unconstrained Nonlinear VEH System
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, R.K.; Shi, Q.; Dhakar, L.; Wang, T.; Heng, C.H.; Lee, C. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism. Sci. Rep. 2017, 7, 41396. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N. Tuning and widening the bandwidth of vibration energy harvesters using a ferrofluid embedded mass. Microsyst. Technol. 2020, 26, 2043–2051. [Google Scholar] [CrossRef]
- Ramlan, R.; Brennan, M.J.; Mace, B.R.; Kovacic, I. Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 2010, 59, 545–558. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Tang, Y.; Pei, J.; Kang, S.; Wu, Z. Widening the bandwidth of vibration energy harvester by automatically tracking the resonant frequency with magnetic sliders. Sustain. Energy Technol. Assess. 2023, 58, 103368. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Toh, T.T.; Wong, K.H.; Burrow, S.G.; Holmes, A.S. Tuning the resonant frequency and damping of an electromagnetic energy harvester using power electronics. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 792–796. [Google Scholar] [CrossRef]
- Cammarano, A.; Neild, S.A.; Burrow, S.G.; Inman, D.J. The bandwidth of optimized nonlinear vibration-based energy harvesters. Smart Mater. Struct. 2014, 23, 055019. [Google Scholar] [CrossRef]
- Cammarano, A.; Gonzalez-Buelga, A.; Neild, S.A.; Burrow, S.G.; Inman, D.J. Bandwidth of a nonlinear harvester with optimized electrical load. J. Phys. Conf. Ser. 2013, 476, 012071. [Google Scholar] [CrossRef]
- Cammarano, A.; Neild, S.; Burrow, S.; Wagg, D.; Inman, D. Optimum resistive loads for vibration-based electromagnetic energy harvesters with a stiffening nonlinearity. J. Intell. Mater. Syst. Struct. 2014, 25, 1757–1770. [Google Scholar] [CrossRef]
- Fernando, J.S.; Sun, Q. Bandwidth widening of vibration energy harvesters through a multi-stage design. J. Renew. Sustain. Energy 2015, 7, 053110. [Google Scholar] [CrossRef]
- Zeng, B.; Zheng, S. A Compact and Broadband Rectifier for Ambient Electromagnetic Energy Harvesting Application. In Proceedings of the 2020 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Makung, Taiwan, 26–28 August 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Yang, B. Nonlinear multi-modal energy harvester and vibration absorber using magnetic softening spring. J. Sound Vib. 2020, 476, 115332. [Google Scholar] [CrossRef]
- Karimpour, H.; Eftekhari, M. Exploiting double jumping phenomenon for broadening bandwidth of an energy harvesting device. Mech. Syst. Signal Process. 2020, 139, 106614. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, S. Analysis and experiments of a pendulum vibration energy harvester with a magnetic multi-stable mechanism. IEEE Trans. Magn. 2022, 58, 1–7. [Google Scholar] [CrossRef]
- Naifar, S.; Bradai, S.; Kanoun, O. Design study of a nonlinear electromagnetic converter using magnetic spring. Eur. Phys. J. Spec. Top. 2022, 231, 1517–1528. [Google Scholar] [CrossRef]
- Wang, W.; Wei, H.; Wei, Z.-H. Numerical analysis of a magnetic-spring-based piecewise nonlinear electromagnetic energy harvester. Eur. Phys. J. Plus 2022, 137, 56. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 288–306. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, K.; Hu, C.; Wang, Y.; Taghavifar, H.; Jing, X. A tunable nonlinear vibrational energy harvesting system with scissor-like structure. Mech. Syst. Signal Process. 2019, 125, 202–214. [Google Scholar] [CrossRef]
- Zhu, Y.-P.; Lang, Z.Q. Beneficial effects of antisymmetric nonlinear damping with application to energy harvesting and vibration isolation under general inputs. Nonlinear Dyn. 2022, 108, 2917–2933. [Google Scholar] [CrossRef]
- Tao, Z.; Wu, H.; Li, H.; Li, H.; Xu, T.; Sun, J.; Wang, W. Theoretical model and analysis of an electromagnetic vibration energy harvester with nonlinear damping and stiffness based on 3D MEMS coils. J. Phys. D Appl. Phys. 2020, 53, 495503. [Google Scholar] [CrossRef]
- Li, J.-Y.; Zhu, S. Tunable electromagnetic damper with synthetic impedance and self-powered functions. Mech. Syst. Signal Process. 2021, 159, 107822. [Google Scholar] [CrossRef]
- Tehrani, M.G.; Elliott, S.J. Extending the dynamic range of an energy harvester using nonlinear damping. J. Sound Vib. 2014, 333, 623–629. [Google Scholar] [CrossRef]
- Hendijanizadeh, M.; Elliott, S.J.; Ghandchi-Tehrani, M. The effect of internal resistance on an energy harvester with cubic resistance load. In Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, 12–16 July 2015; Available online: https://eprints.soton.ac.uk/380273/1/ICSV22_Mehdi_Final_2.pdf (accessed on 20 August 2022).
- Uchenna, D.; Simon, P.; Lang, Z.-Q. Analysis and design of a nonlinear vibration-based energy harvester-a frequency-based approach. In Proceedings of the Advanced Intelligent Mechatronics (AIM), 2017 IEEE International Conference, Munich, Germany, 3–7 July 2017; pp. 1550–1555. [Google Scholar] [CrossRef]
- Diala, U.; Lang, Z.Q.; Pope, S. Analysis, design and optimization of a nonlinear energy harvester. In Proceedings of the 24th International Congress on Sound and Vibration 2017 (ICSV 24), London, UK, 23–27 July 2017; Available online: http://toc.proceedings.com/35564webtoc.pdf (accessed on 23 September 2022).
- Lang, Z.-Q.; Billings, S.A. Output frequency characteristics of nonlinear systems. Int. J. Control. 1996, 64, 1049–1067. [Google Scholar] [CrossRef]
- Lang, Z.; Billings, S.; Yue, R.; Li, J. Output frequency response function of nonlinear Volterra systems. Automatica 2007, 43, 805–816. [Google Scholar] [CrossRef]
- Zhu, Y.; Lang, Z.Q. Design of Nonlinear Systems in the Frequency Domain: An Output Frequency Response Function-Based Approach. IEEE Trans. Control. Syst. Technol. 2017, 26, 1358–1371. [Google Scholar] [CrossRef]
- Guo, P.F.; Lang, Z.Q.; Peng, Z.K. Analysis and design of the force and displacement transmissibility of nonlinear viscous damper-based vibration isolation systems. Nonlinear Dyn. 2012, 67, 2671–2687. [Google Scholar] [CrossRef]
- Jing, X.J.; Lang, Z.Q.; Billings, S.A. Output frequency response function-based analysis for nonlinear Volterra systems. Mech. Syst. Signal Process. 2008, 22, 102–120. [Google Scholar] [CrossRef]
- Feijoo, J.V.; Worden, K.; Stanway, R. Associated linear equations for Volterra operators. Mech. Syst. Signal Process. 2005, 19, 57–69. [Google Scholar] [CrossRef]
- Feijoo, J.V.; Worden, K.; Stanway, R. Analysis of time-invariant systems in the time and frequency domain by associated linear equations (ALEs). Mech. Syst. Signal Process. 2006, 20, 896–919. [Google Scholar] [CrossRef]
- Ibrahim, N.N.L.N.; Lang, Z.Q. A new and efficient method for the determination of Output Frequency Response Function of nonlinear vibration systems. In Proceedings of the Transforming the Future of Infrastructure through Smarter Information: Proceedings of the International Conference on Smart Infrastructure and Construction, Cambridge, UK, 27–29 June 2016; Available online: https://www.icevirtuallibrary.com/doi/abs/10.1680/tfitsi.61279.447 (accessed on 12 May 2023).
- Diala, U.; Gunawardena, R.; Zhu, Y.; Lang, Z.-Q. Nonlinear design and optimisation of a vibration energy harvester. In Proceedings of the 2018 UKACC 12th International Conference on Control (CONTROL), Sheffield, UK, 5–7 September 2018; pp. 180–185. [Google Scholar] [CrossRef]
- Zhu, Y.-P.; Lang, Z.; Mao, H.-L.; Laalej, H. Nonlinear output frequency response functions: A new evaluation approach and applications to railway and manufacturing systems’ condition monitoring. Mech. Syst. Signal Process. 2022, 163, 108179. [Google Scholar] [CrossRef]
- Mofidian, S.M.M.; Bardaweel, H. Displacement transmissibility evaluation of vibration isolation system employing nonlinear-damping and nonlinear-stiffness elements. J. Vib. Control. 2018, 24, 4247–4259. [Google Scholar] [CrossRef]
- Huang, D.; Li, R.; Zhou, S.; Litak, G. Theoretical analysis of vibration energy harvesters with nonlinear damping and nonlinear stiffness. Eur. Phys. J. Plus 2018, 133, 510. [Google Scholar] [CrossRef]
- Peng, Z.; Lang, Z. The effects of nonlinearity on the output frequency response of a passive engine mount. J. Sound Vib. 2008, 318, 313–328. [Google Scholar] [CrossRef]
- Mofidian, S.M.M.; Bardaweel, H. Investigation of Damping Nonlinearity in Duffing-Type Vibration Isolation System with Geometric and Magnetic Stiffness Nonlinearities. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Tampa, FL, USA, 3–9 November 2017. [Google Scholar] [CrossRef]
- Mofidian, S.M.M.; Bardaweel, H. Theoretical study and experimental identification of elastic-magnetic vibration isolation system. J. Intell. Mater. Syst. Struct. 2018, 29, 3550–3561. [Google Scholar] [CrossRef]
Parameters | Notations | Values |
---|---|---|
Mass (kg) | 1 | |
Linear spring stiffness (N.m−1) | 25 | |
Linear damping coefficient (N.s.m−1) | 2 | |
Magnitude of base excitation (m) | 0.05 | |
Resonant frequency (rad.s−1) | 6.4 | |
Natural frequency (rad.s−1) | 5 |
Model Nonlinear Parameter | Sim1 Value | Sim2 Value | Sim3 Value | Sim4 Value | Sim5 Value |
---|---|---|---|---|---|
0.300 | 0.325 | 0.350 | 0.375 | 0.400 | |
0 | 55 | 110 | 165 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diala, U.; Zhu, Y.; Gunawardena, R. Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations. Machines 2024, 12, 30. https://doi.org/10.3390/machines12010030
Diala U, Zhu Y, Gunawardena R. Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations. Machines. 2024; 12(1):30. https://doi.org/10.3390/machines12010030
Chicago/Turabian StyleDiala, Uchenna, Yunpeng Zhu, and Rajintha Gunawardena. 2024. "Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations" Machines 12, no. 1: 30. https://doi.org/10.3390/machines12010030
APA StyleDiala, U., Zhu, Y., & Gunawardena, R. (2024). Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations. Machines, 12(1), 30. https://doi.org/10.3390/machines12010030