Enhanced Output Tracking Control for Direct Current Electric Motor Systems Using Bio-Inspired Optimization
<p>Main diagram of the central ideas behind the functioning of the ACO for control parameter tuning.</p> "> Figure 2
<p>Hypothetical selection of the best path for an element of the colony.</p> "> Figure 3
<p>Main diagram of the search space for the PSO for control parameter tuning.</p> "> Figure 4
<p>Initial randomly distribution of particles.</p> "> Figure 5
<p>Convergence of particles’ motion while seeking the best solution.</p> "> Figure 6
<p>Closed-loop position output tracking with vibrating load torque: (<b>a</b>) Controlled position <span class="html-italic">y</span>. (<b>b</b>) Controlled Velocity <math display="inline"><semantics> <mover accent="true"> <mi>y</mi> <mo>˙</mo> </mover> </semantics></math>. (<b>c</b>) Voltage control input <span class="html-italic">u</span>. (<b>d</b>) Position output tracking error <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 7
<p>Closed-loop position output tracking with noisy sensor measurements <math display="inline"><semantics> <msub> <mi>y</mi> <mi>n</mi> </msub> </semantics></math> with: (<b>a</b>) Noise level <math display="inline"><semantics> <mrow> <mi mathvariant="script">A</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. (<b>b</b>) Noise level <math display="inline"><semantics> <mrow> <mi mathvariant="script">A</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Closed-loop position output tracking: (<b>a</b>) Controlled output <span class="html-italic">y</span>. (<b>b</b>) Virtual tracking errors <math display="inline"><semantics> <msub> <mi>e</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>e</mi> <mn>2</mn> </msub> </semantics></math> from Equations (<a href="#FD21-machines-11-01006" class="html-disp-formula">21</a>) and (<a href="#FD32-machines-11-01006" class="html-disp-formula">32</a>) used for backstepping control design.</p> "> Figure 9
<p>Closed-loop velocity flat-output tracking subjected to a slow varying bounded load torque: (<b>a</b>) Controlled velocity <math display="inline"><semantics> <msub> <mi>y</mi> <mi>f</mi> </msub> </semantics></math>. (<b>b</b>) Armature electric current <math display="inline"><semantics> <msub> <mi>i</mi> <mi>a</mi> </msub> </semantics></math>. (<b>c</b>) Voltage control input <span class="html-italic">u</span>. (<b>d</b>) Velocity output tracking error <math display="inline"><semantics> <msub> <mi>x</mi> <msub> <mn>1</mn> <mi>f</mi> </msub> </msub> </semantics></math>.</p> "> Figure 10
<p>Completely unknown vibrating load torque in the third case study.</p> "> Figure 11
<p>System output tracking responses using the LQR and backstepping controllers. (<b>a</b>) Comparison of the controlled output velocity using the optimal LQR controller <math display="inline"><semantics> <msub> <mi>y</mi> <msub> <mi>f</mi> <mrow> <mi>L</mi> <mi>Q</mi> <mi>R</mi> </mrow> </msub> </msub> </semantics></math> and the introduced backstepping controller <math display="inline"><semantics> <msub> <mi>y</mi> <msub> <mi>f</mi> <mrow> <mi>b</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> </msub> </semantics></math>. (<b>b</b>) Yielded velocity output tracking errors with the LQR controller <math display="inline"><semantics> <msub> <mi>e</mi> <msub> <mi>y</mi> <msub> <mi>f</mi> <mrow> <mi>L</mi> <mi>Q</mi> <mi>R</mi> </mrow> </msub> </msub> </msub> </semantics></math> and the backstepping <math display="inline"><semantics> <msub> <mi>e</mi> <msub> <mi>y</mi> <msub> <mi>f</mi> <mrow> <mi>b</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> </msub> </msub> </semantics></math>. (<b>c</b>) Voltage control input comparison utilizing the LQR approach <math display="inline"><semantics> <msub> <mi>u</mi> <mrow> <mi>L</mi> <mi>Q</mi> <mi>R</mi> </mrow> </msub> </semantics></math> and the introduced backstepping <math display="inline"><semantics> <msub> <mi>u</mi> <mrow> <mi>b</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> </semantics></math>. (<b>d</b>) Comparison of the armature electric current employing the LQR controller <math display="inline"><semantics> <msub> <mi>i</mi> <msub> <mi>a</mi> <mrow> <mi>L</mi> <mi>Q</mi> <mi>R</mi> </mrow> </msub> </msub> </semantics></math> and the proposed controller <math display="inline"><semantics> <msub> <mi>i</mi> <msub> <mi>a</mi> <mrow> <mi>b</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> </msub> </semantics></math>.</p> "> Figure 12
<p>The main scheme of a B-spline artificial neural network.</p> "> Figure 13
<p>Functional Flow Block Diagram of a Bs-ANN.</p> "> Figure 14
<p>Closed-loop adaptive velocity flat-output tracking: (<b>a</b>) Controlled velocity <math display="inline"><semantics> <msub> <mi>y</mi> <mi>f</mi> </msub> </semantics></math>. (<b>b</b>) Armature electric current <math display="inline"><semantics> <msub> <mi>i</mi> <mi>a</mi> </msub> </semantics></math>. (<b>c</b>) Velocity output tracking error <math display="inline"><semantics> <msub> <mi>x</mi> <msub> <mn>1</mn> <mi>f</mi> </msub> </msub> </semantics></math>. (<b>d</b>) Adaptive backstepping control parameters.</p> "> Figure 15
<p>Closed-loop velocity flat-output tracking subjected to a slow varying bounded load torque with high frequency components: (<b>a</b>) Controlled velocity <math display="inline"><semantics> <msub> <mi>y</mi> <mi>f</mi> </msub> </semantics></math>. (<b>b</b>) Armature electric current <math display="inline"><semantics> <msub> <mi>i</mi> <mi>a</mi> </msub> </semantics></math>. (<b>c</b>) Voltage control input <span class="html-italic">u</span>. (<b>d</b>) Adaptive backstepping control parameters.</p> ">
Abstract
:1. Introduction
2. Direct Current Electric Machine Modelling
Differential Flatness Modelling
3. Direct Current Electric Machine Control
3.1. Bio-Inspired Algorithms for Control Design
- Initialization: a set of artificial ants is created, each representing a potential solution to the optimization problem. A pheromone matrix is initialized, typically with small values, to represent the desirability of different paths or solutions. Pheromones are used to communicate between ants.
- Ant movement: each ant explores the problem space by iteratively making decisions based on a combination of pheromone levels and a heuristic function. The heuristic function guides ants towards potentially better solutions. Ants construct solutions incrementally by selecting one element (e.g., a path or a solution component) at a time.
- Pheromone update: after all ants have constructed their solutions, the pheromone levels are updated. Ants deposit pheromone on the components of their solutions based on the quality of their solutions. Better solutions receive more pheromone. Pheromone levels also decay over time to simulate the natural evaporation of pheromones.
- Solution evaluation: the quality of the solutions constructed by the ants is evaluated based on the objective function of the optimization problem.
- Global information exchange: ants communicate indirectly through the pheromone matrix. Good solutions result in higher pheromone levels on the components used in those solutions. This indirect communication guides other ants towards exploring similar paths or solutions.
- Iteration: steps 2 to 5 are repeated for a certain number of iterations or until a termination condition is met.
- Termination: the algorithm finishes when a stopping criterion is reached, such as a maximum number of iterations or when no significant improvement is observed.
- Output: the best solution found by the algorithm is returned as the output.
- Initialization: PSO starts by initializing a population of particles. Each particle represents a potential solution to the optimization problem. Each particle has a position and a velocity, which are randomly assigned at the beginning.
- Objective function evaluation: the objective function of the optimization problem is evaluated for each particle, and the fitness or quality of each particle’s solution is determined.
- Particle movement: each particle adjusts its velocity and position based on its own best-known solution (individual best or “pBest”) and the best-known solution of the entire population (global best or “gBest”). The velocity of each particle is updated by considering its current velocity, its distance from its pBest, and its distance from gBest. This update encourages particles to move towards better solutions. The particle’s position is updated based on its updated velocity.
- Updating pBest and gBest: after the position update, each particle compares its new solution to its pBest. If the new solution is better, it updates its pBest. The algorithm also updates the gBest by comparing the pBests of all particles in the population.
- Termination: the algorithm continues to iterate through steps 3 and 4 for a specified number of iterations or until a termination condition is met (e.g., a target fitness level is achieved).
- Output: the best solution found by any particle in the population, typically the gBest, is returned as the final output.
3.2. Backstepping-Based Position Control
- System 1: from Equation (14a) can be seen as a virtual controller as follows:
- System 2: Notice from expression (26b) that the state variable can be adopted as a virtual control input for the subsystem. Then, let us work with the following set of expressions:
- System 3: Finally, let us introduce the total Lyapunov function given by
3.3. Backstepping-Based Velocity Control
4. Numeric Simulation Results
4.1. Case: 1 Backstepping Position Control
4.1.1. Noisy Measurements in the Backstepping Position Control
4.1.2. Convergence of Virtual Errors
4.2. Case 2: Backstepping Velocity Control
4.3. Case 3: Performance Comparative Regarding a LQR-like Controller
4.4. Case 4: Adaptive Integral Backstepping Control
4.5. B-Spline Off-Line Training by PSO
Algorithm 1: Evaluation of the objective function . |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
DC | Direct Current |
PID | Proportional Integral Derivative |
PI | Proportional Integral |
Bs-ANN | B-Spline Artificial Neural Network |
PSO | Particle Swarm Optimization |
ACO | Ant Colony Optimization |
ITAE | Integral Time Absolute Error |
ISCI | Integral Squared Control Input |
LQR | Linear Quadratic Regulator |
GPI | Generalized Proportional-Integral |
References
- Barkas, D.A.; Ioannidis, G.C.; Psomopoulos, C.S.; Kaminaris, S.D.; Vokas, G.A. Brushed DC Motor Drives for Industrial and Automobile Applications with Emphasis on Control Techniques: A Comprehensive Review. Electronics 2020, 9, 887. [Google Scholar] [CrossRef]
- Buenestado, P.; Gibergans-Báguena, J.; Acho, L.; Pujol-Vázquez, G. Predictive Speed Control of a DC Universal Motor Applied to Monitor Electric Vehicle Batteries. Machines 2023, 11, 740. [Google Scholar] [CrossRef]
- Merida-Calvo, L.; Rodriguez, A.S.M.; Ramos, F.; Feliu-Batlle, V. Advanced Motor Control for Improving the Trajectory Tracking Accuracy of a Low-Cost Mobile Robot. Machines 2023, 11, 14. [Google Scholar] [CrossRef]
- Manuel, N.L.; İnanç, N.; Lüy, M. Control and performance analyses of a DC motor using optimized PIDs and fuzzy logic controller. Results Control. Optim. 2023, 13, 100306. [Google Scholar] [CrossRef]
- Guerrero-Ramirez, E.; Martinez-Barbosa, A.; Contreras-Ordaz, M.A.; Guerrero-Ramirez, G.; Guzman-Ramirez, E.; Barahona-Avalos, J.L.; Adam-Medina, M. DC Motor Drive Powered by Solar Photovoltaic Energy: An FPGA-Based Active Disturbance Rejection Control Approach. Energies 2022, 15, 6595. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.; Favela-Contreras, A. An asymptotic differentiation approach of signals in velocity tracking control of DC motors. Electr. Power Syst. Res. 2015, 122, 218–223. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Tapia-Olvera, R.; Valderrabano-Gonzalez, A.; Yanez-Badillo, H.; Rosas-Caro, J.C.; CarlosMayo-Maldonado, J. Closed-loop online harmonic vibration estimation in DC electric motor systems. Appl. Math. Model. 2021, 94, 460–481. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Favela-Contreras, A.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C. Output feedback control for robust tracking of position trajectories for DC electric motors. Electr. Power Syst. Res. 2014, 107, 183–189. [Google Scholar] [CrossRef]
- Harrouz, A.; Becheri, H.; Colak, I.; Kayisli, K. Backstepping control of a separately excited DC motor. Electr. Eng. 2018, 100, 1393–1403. [Google Scholar] [CrossRef]
- Okoro, I.S.; Enwerem, C.O. Robust control of a DC motor. Heliyon 2020, 6, e05777. [Google Scholar] [CrossRef]
- Singiresu, S.R. Engineering Optimization Theory and Practice, 5th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kochenderfer, M.J. Algorithms for Optimization, 1st ed.; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Nguyen, T.; Nhut VO, T.M. Centrifugal Pump Design: An Optimization. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 17, 136–151. [Google Scholar] [CrossRef]
- Huynh, N.T.; Nguyen, T.V.T.; Tam, N.T.; Nguyen, Q.M. Optimizing Magnification Ratio for the Flexible Hinge Displacement Amplifier Mechanism Design. In Proceedings of the Annual International Conference on Material, Machines and Methods for Sustainable Development, Nha Trang, Vietnam, 12–15 November 2020; Long, B.T., Kim, Y.H., Ishizaki, K., Toan, N.D., Parinov, I.A., Vu, N.P., Eds.; Springer: Cham, Switzerland, 2021; pp. 769–778. [Google Scholar]
- Huang, C.; Li, Y.; Yao, X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans. Evol. Comput. 2020, 24, 201–216. [Google Scholar] [CrossRef]
- Serradilla, F.; Cañas, N.; Naranjo, J.E. Optimization of the Energy Consumption of Electric Motors through Metaheuristics and PID Controllers. Electronics 2020, 9, 1842. [Google Scholar] [CrossRef]
- Templos-Santos, J.L.; Aguilar-Mejia, O.; Peralta-Sanchez, E.; Sosa-Cortez, R. Parameter Tuning of PI Control for Speed Regulation of a PMSM Using Bio-Inspired Algorithms. Algorithms 2019, 12, 54. [Google Scholar] [CrossRef]
- Sabir, M.M.; Khan, J.A. Optimal Design of PID Controller for the Speed Control of DC Motor by Using Metaheuristic Techniques. Adv. Artif. Neural Syst. 2014, 2014, 126317. [Google Scholar] [CrossRef]
- Chiha, I.; Liouane, N.; Borne, P. Tuning PID Controller Using Multiobjective Ant Colony Optimization. Appl. Comput. Intell. Soft Comput. 2012, 2012, 536326. [Google Scholar] [CrossRef]
- Rodríguez-Molina, A.; Villarreal-Cervantes, M.G.; Álvarez-Gallegos, J.; Aldape-Pérez, M. Bio-inspired adaptive control strategy for the highly efficient speed regulation of the DC motor under parametric uncertainty. Appl. Soft Comput. 2019, 75, 29–45. [Google Scholar] [CrossRef]
- Sahdev, S.K. Electrical Machines, 1st ed.; Cambridge University Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamic Systems, 8th ed.; Pearson Education Limited: Harlow, UK, 2020. [Google Scholar]
- Umans, S.D. Fitzgerald & Kingsley’s Electric Machinery, 7th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Fliess, M.; Levine, J.; Martin, P.; Rouchon, P. Flatness and defect of non-linear systems: Introductory theory and examples. Int. J. Control. 1995, 61, 1327–1361. [Google Scholar] [CrossRef]
- Fliess, M.; Levine, J.; Martin, P.; Ollivier, F.; Rouchon, P. Controlling Nonlinear Systems by Flatness. In Systems and Control in the Twenty-First Century; Byrnes, C.I., Datta, B.N., Martin, C.F., Gilliam, D.S., Eds.; Springer: Boston, MA, USA, 1997; pp. 137–154. [Google Scholar]
- Beltran-Carbajal, F.; Silva-Navarro, G. Output feedback dynamic control for trajectory tracking and vibration suppression. Appl. Math. Model. 2020, 79, 793–808. [Google Scholar] [CrossRef]
- Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello-Coello, C.A.; Herrera, F. Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [Google Scholar] [CrossRef]
- Yang, X.S.; Karamanoglu, M. Nature-inspired computation and swarm intelligence: A state-of-the-art overview. In Nature-Inspired Computation and Swarm Intelligence; Yang, X.S., Ed.; Academic Press: London, UK, 2020; pp. 3–18. [Google Scholar]
- Siddique, N.H.; Adeli, H. Nature-Inspired Computing: Physics- and Chemistry-Based Algorithms, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Slowik, A. Swarm Intelligence Algorithms: Modifications and Applications, 1st ed.; CRC Press: Boca Raton, USA, 2020. [Google Scholar]
- Sun, J.; Lai, C.H.; Wu, X.J. Particle Swarm Optimisation: Classical and Quantum Optimisation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Marco Dorigo, T.S. Ant Colony Optimization, 1st ed.; The MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Bonyadi, M.R.; Michalewicz, Z. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review. Evol. Comput. 2017, 25, 1–54. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Yañez-Badillo, H.; Beltran-Carbajal, F.; Tapia-Olvera, R.; Favela-Contreras, A.; Sotelo, C.; Sotelo, D. Adaptive Robust Motion Control of Quadrotor Systems using Artificial Neural Networks and Particle Swarm Optimization. Mathematics 2021, 9, 2367. [Google Scholar] [CrossRef]
- Kokotović, P.V. The joy of feedback: Nonlinear and adaptive. IEEE Control. Syst. Mag. 1992, 12, 7–17. [Google Scholar] [CrossRef]
- Sepulchre, D.R.; Janković, M.; Kokotović, P.V. Recursive designs. In Constructive Nonlinear Control; Springer: London, UK, 1997; pp. 229–284. [Google Scholar]
- Bansal, N.; Bisht, A.; Paluri, S.; Kumar, V.; Rana, K.; Azar, A.T.; Vaidyanathan, S. Single-link flexible joint manipulator control using backstepping technique. In Backstepping Control of Nonlinear Dynamical Systems; Vaidyanathan, S., Azar, A.T., Eds.; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Pearson Education Limited: London, UK, 2014. [Google Scholar]
- Tan, Y.; Chang, J.; Tan, H.; Hu, J. Integral backstepping control and experimental implementation for motion system. In Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, AK, USA, 27 September 2000; pp. 367–372. [Google Scholar] [CrossRef]
- Skjetne, R.; Fossen, T. On integral control in backstepping: Analysis of different techniques. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 2, pp. 1899–1904. [Google Scholar] [CrossRef]
- Yu, Z.; Niu, W. Flatness-Based Backstepping Antisway Control of Underactuated Crane Systems under Wind Disturbance. Electronics 2023, 12, 244. [Google Scholar] [CrossRef]
- Wang, M.; Wang, K.; Zhao, Q.; Zheng, X.; Gao, H.; Yu, J. LQR Control and Optimization for Trajectory Tracking of Biomimetic Robotic Fish Based on Unreal Engine. Biomimetics 2023, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Dul, F.; Lichota, P.; Rusowicz, A. Generalized Linear Quadratic Control for a Full Tracking Problem in Aviation. Sensors 2020, 20, 2955. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, L.; Frasca, M.; Buscarino, A. Optimal and Robust Control: Advanced Topics with MATLAB, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Sir Elkhatem, A.; Naci Engin, S. Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control. Alex. Eng. J. 2022, 61, 6275–6292. [Google Scholar] [CrossRef]
- Foehn, P.; Scaramuzza, D. Onboard State Dependent LQR for Agile Quadrotors. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 6566–6572. [Google Scholar] [CrossRef]
- Harris, C.J.; Moore, C.G.; Brown, M. Intelligent Control: Aspects of Fuzzy Logic and Neural Nets, 1st ed.; World Scientific: London, UK, 1993. [Google Scholar]
- Brown, M.; Harris, C.J. Neurofuzzy Adaptive Modelling and Control, 1st ed.; Prentice Hall International (UK) Ltd.: Hertfordshire, UK, 1994. [Google Scholar]
- Blanchard, B.; Fabrycky, W. Systems Engineering and Analysis, 5th ed.; Pearson Education: London, UK, 2014. [Google Scholar]
Parameter | Units | Value |
---|---|---|
2.5 | ||
kg m2 | 0.0774 | |
Nm s/rad | 6.562 | |
mH | 0.612 | |
n | - | 81 |
mNm/A | 82.2 | |
mV/rad/s | 82.3215 |
Algorithm | ISCI | ITAE | Size | Iterations | |
---|---|---|---|---|---|
ACO | 35.72 | 0.14 | 11.42 | 50 | 100 |
Algorithm | ISCI | ITAE | Size | Iterations | |
---|---|---|---|---|---|
PSO | 1.61 × | 0.79 | 4.84 × | 45 | 100 |
Controller | ISCI | ITAE | Size | Iterations | |
---|---|---|---|---|---|
LQR | 1.860 × | 21.62 | 987.34 | 35 | 80 |
Backstepping | 1.863 × | 2.52 | 939.12 | 35 | 80 |
Algorithm | ISCI | ITAE | Size | Iterations | |
---|---|---|---|---|---|
PSO | 25.65 × | 1.84 | 7.95 × | 35 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yañez-Badillo, H.; Beltran-Carbajal, F.; Rivas-Cambero, I.; Favela-Contreras, A.; Arroyo-Nuñez, J.H.; Balderas-Gutierrez, J.N. Enhanced Output Tracking Control for Direct Current Electric Motor Systems Using Bio-Inspired Optimization. Machines 2023, 11, 1006. https://doi.org/10.3390/machines11111006
Yañez-Badillo H, Beltran-Carbajal F, Rivas-Cambero I, Favela-Contreras A, Arroyo-Nuñez JH, Balderas-Gutierrez JN. Enhanced Output Tracking Control for Direct Current Electric Motor Systems Using Bio-Inspired Optimization. Machines. 2023; 11(11):1006. https://doi.org/10.3390/machines11111006
Chicago/Turabian StyleYañez-Badillo, Hugo, Francisco Beltran-Carbajal, Ivan Rivas-Cambero, Antonio Favela-Contreras, Jose Humberto Arroyo-Nuñez, and Juan Nabor Balderas-Gutierrez. 2023. "Enhanced Output Tracking Control for Direct Current Electric Motor Systems Using Bio-Inspired Optimization" Machines 11, no. 11: 1006. https://doi.org/10.3390/machines11111006
APA StyleYañez-Badillo, H., Beltran-Carbajal, F., Rivas-Cambero, I., Favela-Contreras, A., Arroyo-Nuñez, J. H., & Balderas-Gutierrez, J. N. (2023). Enhanced Output Tracking Control for Direct Current Electric Motor Systems Using Bio-Inspired Optimization. Machines, 11(11), 1006. https://doi.org/10.3390/machines11111006