Multi-Task Data Imputation for Time-Series Forecasting in Turbomachinery Health Prognostics
<p>Flowchart of the proposed MT-LSTM method.</p> "> Figure 2
<p>Box diagram of (<b>a</b>) multiple STGPs and (<b>b</b>) MTGP for multi-task modeling.</p> "> Figure 3
<p>LSTM neural network and its unrolled form.</p> "> Figure 4
<p>Time-series signals of the 4 tasks from the OM dataset. <span class="html-italic">x</span>-axis: n is the number of data points.</p> "> Figure 5
<p>Imputation results of MTGP and STGP for S1.</p> "> Figure 6
<p>Imputation results of MTGP and STGP for S2.</p> "> Figure 7
<p>Imputation results of MTGP and STGP for S3.</p> "> Figure 8
<p>Prediction results of MT-LSTM, ST-LSTM, and LSTM for S3.</p> "> Figure 9
<p>Diagram of sensors used to acquire time-series data from a centrifugal compressor.</p> "> Figure 10
<p>Imputation results of MTGP and STGP for the extreme situation.</p> "> Figure 11
<p>Prediction results of MT-LSTM, ST-MTGP, and LSTM for the extreme situation.</p> "> Figure 12
<p>Imputation results of MTGP and STGP for the extreme situation (after normalization).</p> "> Figure 13
<p>Prediction results of MT-LSTM, ST-MTGP, and LSTM for the extreme situation (after normalization).</p> "> Figure 14
<p>The first 5 principal components after data pre-processing from the compressor data.</p> "> Figure 15
<p>Imputation results of MTGP and STGP for the extreme situation (with data pre-processing).</p> "> Figure 16
<p>Prediction results of MT-LSTM, ST-MTGP, and LSTM for the extreme situation (with data pre-processing).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Data Denoising
2.2. Dimensionality Reduction
2.3. MTGP Model
2.4. LSTM Model
3. Experiments and Results
3.1. OM Dataset
3.1.1. Multi-Task Data Imputation
- (1)
- S1—Few data missing
- (2)
- S2—Different Sampling Frequencies
3.1.2. Time-Series Forecasting via Multi-Task Data Imputation
3.2. Real-World Datasets
3.2.1. Results without Data Pre-Processing
3.2.2. Results with Data Pre-Processing
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Insun, S.; Junmin, L.; Young, L.J.; Kyusung, J.; Daeil, K.; Youn, B.D.; Soo, J.H.; Joo-Ho, C. A Framework for Prognostics and Health Management Applications toward Smart Manufacturing Systems. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 535–554. [Google Scholar]
- Lee, G.Y.; Kim, M.; Quan, Y.J.; Kim, M.S.; Kim, T.; Yoon, H.S.; Min, S.; Kim, D.H.; Mun, J.W.; Oh, J.W. Machine health management in smart factory: A review. J. Mech. Sci. Technol. 2018, 32, 987–1009. [Google Scholar] [CrossRef]
- Kalgren, P.W.; Byington, C.S.; Roemer, M.J. Defining PHM, A Lexical Evolution of Maintenance and Logistics. In Proceedings of the 2006 IEEE Autotestcon, Anaheim, CA, USA, 18–21 September 2016. [Google Scholar]
- Sun, C.; Bisland, S.G.; Nguyen, K.; Long, V. Prognostic/Diagnostic Health Management System (PHM) for Fab Efficiency. In Proceedings of the IEEE Advanced Semiconductor Manufacturing Conference, Boston, MA, USA, 22–24 May 2006. [Google Scholar]
- Cui, L.; Huang, J.; Zhang, F.; Chu, F. HVSRMS localization formula and localization law: Localization diagnosis of a ball bearing outer ring fault. Mech. Syst. Signal Process. 2019, 120, 608–629. [Google Scholar] [CrossRef]
- Lc, A.; Jing, W.A.; Sl, B. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis. J. Sound Vib. 2014, 333, 2840–2862. [Google Scholar]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Van, M.; Hoang, D.T.; Kang, H.J. Bearing Fault Diagnosis Using a Particle Swarm Optimization-Least Squares Wavelet Support Vector Machine Classifier. Sensors 2020, 20, 3422. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, Q.; Peng, Z.; Sun, G.; Xu, W.; Wang, Q. A Diagnosis Method for Rotation Machinery Faults Based on Dimensionless Indexes Combined with K- Nearest Neighbor Algorithm. Math. Probl. Eng. 2017, 2017, 60572929. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.K.; Aggarwal, A. Detection and diagnosis of induction motor bearing faults using multiwavelet transform and naive Bayes classifier. Int. Trans. Electr. Energy Syst. 2018, 28, 115597668. [Google Scholar] [CrossRef]
- Jiang, G.; He, H.; Yan, J.; Xie, P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE Trans. Ind. Electron. 2019, 66, 3196–3207. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, H.; Wen, J.; Li, S.; Liu, Q. A deep learning-based recognition method for degradation monitoring of ball screw with multi-sensor data fusion. Microelectron. Reliab. 2017, 75, 215–222. [Google Scholar] [CrossRef]
- Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vasquez, R.E. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 2016, 76–77, 283–293. [Google Scholar] [CrossRef]
- Han, Y.; Tang, B.; Deng, L. An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes. Comput. Ind. 2019, 107, 50–58. [Google Scholar] [CrossRef]
- Han, Y.; Tang, B.; Lei, D. Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis. Measurement 2018, 127, 246–255. [Google Scholar] [CrossRef]
- Mei, Y.; Wu, Y.; Li, L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In Proceedings of the IEEE International Conference on Aircraft Utility Systems, Beijing, China, 10–12 October 2016. [Google Scholar]
- Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [Google Scholar] [CrossRef]
- Shi, J.; He, Q.; Wang, Z. An LSTM-based severity evaluation method for intermittent open faults of an electrical connector under a shock test. Measurement 2020, 173, 108653. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.Y.; Qin, W.L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 2017, 130, 377–388. [Google Scholar]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, S.; An, Z.; Jiang, X.; Qian, W.; Ji, S. Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines. Neurocomputing 2019, 329, 53–65. [Google Scholar] [CrossRef]
- Guo, X.; Lu, K.; Cheng, Y.; Zhao, W.; Wu, H.; Li, D.; Li, J.; Yang, S.; Zhang, Y. Research on fault diagnosis method for hydraulic system of CFETR blanket transfer device based on CNN-LSTM. Fusion Eng. Des. 2022, 185, 113321. [Google Scholar] [CrossRef]
- Lim, S.L.H.; Duong, P.L.T.; Park, H.; Raghavan, N. Expedient validation of LED reliability with anomaly detection through multi-output Gaussian process regression. Microelectron. Reliab. 2022, 138, 114624. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [Google Scholar] [CrossRef]
- Mao, W.; Liu, Y.; Ding, L.; Li, Y. Imbalanced Fault Diagnosis of Rolling Bearing Based on Generative Adversarial Network: A Comparative Study. IEEE Access 2019, 7, 9515–9530. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X.; Zou, J. The Optimized Deep Belief Networks With Improved Logistic Sigmoid Units and Their Application in Fault Diagnosis for Planetary Gearboxes of Wind Turbines. IEEE Trans. Ind. Electron. 2019, 66, 3814–3824. [Google Scholar] [CrossRef]
- Zhuang, Z.; Qin, W. Intelligent fault diagnosis of rolling bearing using one-dimensional Multi-Scale Deep Convolutional Neural Network based health state classification. In Proceedings of the ICNSC 2018, Zhuhai, China, 27–29 March 2018. [Google Scholar]
- Rasmussen, C.E.; Williams, C. Gaussian Processes for Machine Learning. In Gaussian Processes for Machine Learning; The MIT Press: London, MA, USA, 2005. [Google Scholar]
- Lvarez, M.A.; Luengo, D.; Titsias, M.K.; Lawrence, N.D. Efficient Multioutput Gaussian Processes through Variational Inducing Kernels. JMLR Workshop Conf. Proc. 2010, 9, 25–32. [Google Scholar]
- Osborne, M.A.; Roberts, S.J.; Rogers, A.; Jennings, N.R. Real-time information processing of environmental sensor network data using Bayesian Gaussian processes. ACM Trans. Sens. Netw. 2012, 9, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Skolidis, G. Bayesian Multitask Classification With Gaussian Process Priors. IEEE Press 2011, 22, 2011–2021. [Google Scholar] [CrossRef]
- Zhou, X.; Qin, T.; Ji, M.; Qiao, D. A LSTM assisted orbit determination algorithm for spacecraft executing continuous maneuver. Acta Astronaut. 2022; in press. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, Y.; Jiang, H.; Jiang, M.; You, F.; Liu, Q. Prediction of ultra-short-term wind power based on CEEMDAN-LSTM-TCN. Energy Rep. 2022, 8, 483–492. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Sensors 2019, 19, 972. [Google Scholar] [CrossRef] [Green Version]
- Ewees, A.A.; Al-qaness, M.A.A.; Abualigah, L.; Elaziz, M.A. HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting. Energy Convers. Manag. 2022, 268, 116022. [Google Scholar] [CrossRef]
- Durichen, R.; Davenport, L.; Bruder, R.; Wissel, T.; Ernst, F. Evaluation of the potential of multi-modal sensors for respiratory motion prediction and correlation. In Proceedings of the Conference International Conference of the IEEE Engineering in Medicine & Biology Society IEEE Engineering in Medicine & Biology Society Conference, Osaka, Japan, 3–7 July 2013. [Google Scholar]
Error of MTGP | Task 1 | Task 2 | Task 3 | Task 4 |
MAE | 0.194 | 0.087 | 0.160 | 0.240 |
RMSE | 0.255 | 0.120 | 0.193 | 0.315 |
MAPE (%) | 17.059 | 70.374 | 20.725 | 15.138 |
Error of STGP | Task 1 | Task 2 | Task 3 | Task 4 |
MAE | 1.626 | 0.726 | 0.191 | 1.762 |
RMSE | 2.041 | 0.893 | 0.234 | 2.246 |
MAPE (%) | 97.723 | 254.216 | 29.908 | 88.490 |
Error of MTGP | Task 1 | Task 2 | Task 4 |
MAE | 0.163 | 0.101 | 0.583 |
RMSE | 0.224 | 0.136 | 0.720 |
MAPE (%) | 15.127 | 78.622 | 68.081 |
Error of STGP | Task 1 | Task 2 | Task 4 |
MAE | 1.745 | 0.317 | 1.840 |
RMSE | 2.172 | 0.395 | 2.257 |
MAPE (%) | 103.502 | 127.008 | 85.353 |
Error | STGP | MTGP |
---|---|---|
MAE | 1.84 | 0.494 |
RMSE | 2.128 | 0.648 |
MAPE (%) | 170.474 | 68.578 |
Error | ST-LSTM | MT-LSTM | LSTM on Task 1 |
---|---|---|---|
MAE | 1.853 | 0.508 | 3.254 |
RMSE | 2.187 | 0.71 | 3.704 |
MAPE (%) | 156.440 | 37.002 | 392.669 |
Variable | Task | Minimum | Maximum |
---|---|---|---|
Inlet pressure | Task 1 | 0.099 | 0.103 |
Inlet temperature | Task 2 | 1.6 | 28.8 |
Exhaust pressure | Task 3 | 0.5 | 0.514 |
Exhaust temperature | Task 4 | 80 | 91.4 |
Exhaust flow | Task 5 | 90,086 | 99,872 |
Inlet guide vane | Task 6 | 30.2 | 63 |
Bearing 1’s temperature | Task 7 | 52.4 | 55.8 |
Bearing 2’s temperature | Task 8 | 75.7 | 78.4 |
Axis temperature | Task 9 | 73.3 | 79.3 |
Axis vibration | Task 10 | 19.4 | 26.3 |
Axis displacement | Task 11 | −0.304 | −0.266 |
Error | STGP | MTGP |
---|---|---|
MAE | 0.597 | 0.534 |
RMSE | 0.774 | 0.722 |
MAPE (%) | 2.678 | 2.391 |
Error | ST-LSTM | MT-LSTM | LSTM on Task 10 |
---|---|---|---|
MAE | 0.642 | 0.544 | 3.275 |
RMSE | 0.791 | 0.686 | 3.648 |
MAPE (%) | 6.418 | 5.646 | 13.994 |
Error | STGP | MTGP |
---|---|---|
MAE | 0.052 | 0.032 |
RMSE | 0.066 | 0.042 |
MAPE (%) | 31.938 | 19.518 |
Error | ST-LSTM | MT-LSTM | LSTM on Task 10 |
---|---|---|---|
MAE | 0.056 | 0.036 | 0.222 |
RMSE | 0.067 | 0.044 | 0.247 |
MAPE (%) | 77.799 | 73.499 | 84.734 |
Error | STGP | MTGP |
---|---|---|
MAE | 0.415 | 0.172 |
RMSE | 0.554 | 0.218 |
MAPE (%) | 34.557 | 20.218 |
Error | ST-LSTM | MT-LSTM | LSTM on Task 10 |
---|---|---|---|
MAE | 0.441 | 0.183 | 1.188 |
RMSE | 0.566 | 0.228 | 1.424 |
MAPE (%) | 70.872 | 67.051 | 99.277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ding, X.; Wang, X.; Zhao, Y.; Liu, C.; Liu, H.; Chen, K. Multi-Task Data Imputation for Time-Series Forecasting in Turbomachinery Health Prognostics. Machines 2023, 11, 18. https://doi.org/10.3390/machines11010018
Chen X, Ding X, Wang X, Zhao Y, Liu C, Liu H, Chen K. Multi-Task Data Imputation for Time-Series Forecasting in Turbomachinery Health Prognostics. Machines. 2023; 11(1):18. https://doi.org/10.3390/machines11010018
Chicago/Turabian StyleChen, Xudong, Xudong Ding, Xiaofang Wang, Yusong Zhao, Changjun Liu, Haitao Liu, and Kexuan Chen. 2023. "Multi-Task Data Imputation for Time-Series Forecasting in Turbomachinery Health Prognostics" Machines 11, no. 1: 18. https://doi.org/10.3390/machines11010018
APA StyleChen, X., Ding, X., Wang, X., Zhao, Y., Liu, C., Liu, H., & Chen, K. (2023). Multi-Task Data Imputation for Time-Series Forecasting in Turbomachinery Health Prognostics. Machines, 11(1), 18. https://doi.org/10.3390/machines11010018