Fault Diagnosis of Motor Vibration Signals by Fusion of Spatiotemporal Features
<p>The GRU’s internal structure.</p> "> Figure 2
<p>GRU temporal module based on an attention mechanism.</p> "> Figure 3
<p>Local mean decomposition.</p> "> Figure 4
<p>LMD motor vibration signal decomposition.</p> "> Figure 5
<p>Two-dimensional vibration matrix visualization. (<b>a</b>) is the original vibration signal. (<b>b</b>–<b>f</b>) are the PF components.</p> "> Figure 6
<p>Channel attention module.</p> "> Figure 7
<p>Data visualization of different fault types in the same channel.</p> "> Figure 8
<p>Position attention module.</p> "> Figure 9
<p>Spatiotemporal feature fusion network.</p> "> Figure 10
<p>Visualization of local mean decomposition of fault signals. (<b>a</b>) normal; (<b>b</b>) 2 turns short circuit; (<b>c</b>) 4 turns short circuit; (<b>d</b>) 8 turns short circuit; (<b>e</b>) air gap eccentricity; (<b>f</b>) broken rotor strip; (<b>g</b>) bearing seat damage; (<b>h</b>) bearing wear.</p> "> Figure 11
<p>Two-dimensional matrix visualization of fault data. (<b>a</b>) normal; (<b>b</b>) 2 turns short circuit; (<b>c</b>) 4 turns short circuit; (<b>d</b>) 8 turns short circuit; (<b>e</b>) air gap eccentricity; (<b>f</b>) broken rotor strip; (<b>g</b>) bearing seat damage; (<b>h</b>) bearing wear.</p> "> Figure 11 Cont.
<p>Two-dimensional matrix visualization of fault data. (<b>a</b>) normal; (<b>b</b>) 2 turns short circuit; (<b>c</b>) 4 turns short circuit; (<b>d</b>) 8 turns short circuit; (<b>e</b>) air gap eccentricity; (<b>f</b>) broken rotor strip; (<b>g</b>) bearing seat damage; (<b>h</b>) bearing wear.</p> "> Figure 12
<p>Training process loss and accuracy variation.</p> "> Figure 12 Cont.
<p>Training process loss and accuracy variation.</p> "> Figure 13
<p>Attention visualization. (<b>a</b>) CNN branching channel attention visualization; (<b>b</b>) CNN branching position attention visualization; (<b>c</b>) GRU branch attention visualization.</p> "> Figure 13 Cont.
<p>Attention visualization. (<b>a</b>) CNN branching channel attention visualization; (<b>b</b>) CNN branching position attention visualization; (<b>c</b>) GRU branch attention visualization.</p> ">
Abstract
:1. Introduction
- The STNet utilizes the spatial feature extraction capability of a CNN and the temporal feature extraction capability of a GRU to construct a dual-stream network. The network combines temporal and spatial features for fault diagnosis of vibration signals instead of a single temporal or spatial feature.
- The time series of vibration signals is much longer than the text in natural language processing. Recurrent neural networks do not preserve all the critical information. Therefore, a GRU with an attention mechanism is designed to extract temporal features and effectively synthesize the state and vibration features at different moments.
- When the CNN extracts the spatial information of vibration signals, channel and position attention make the network capture the dependencies of each position. The attention mechanism obtains rich contextual features to enhance diagnostic accuracy.
2. Temporal Feature
2.1. Gated Recurrent Unit
2.2. GRU Temporal Module Based on Attention Mechanism
3. Spatial Features
3.1. Local Mean Decomposition
3.2. CNN Module Based on Attention Mechanism
4. Spatiotemporal Feature Fusion Network
5. Experiments
5.1. Data
5.2. Experiment Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Liu, X. One-dimensional residual convolutional auto-encoder for fault detection in complex industrial processes. Int. J. Prod. Res. 2021, 196, 1–20. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Yang, W.; Jiang, D. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowl. Based Syst. 2019, 165, 474–487. [Google Scholar] [CrossRef]
- Chen, Z.; Gryllias, K.; Li, W. Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network. IEEE Trans. Ind. Inform. 2019, 16, 339–349. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B. A review of fault detection and diagnosis for the traction system in high-speed trains. IEEE Trans. Intell. Transp. Syst. 2020, 21, 450–465. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B.; Ding, S.; Huang, B.S. Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1–17. [Google Scholar] [CrossRef]
- Hsueh, Y.-M.; Ittangihal, V.R.; Wu, W.-B.; Chang, H.-C.; Kuo, C.-C. Fault diagnosis system for induction motors by CNN using empirical wavelet transform. Symmetry 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Kao, I.H.; Wang, W.J.; Lai, Y.H.; Perng, J.W. Analysis of permanent magnet synchronous motor fault diagnosis based on learning. IEEE Trans. Instrum. Meas. 2019, 68, 310–324. [Google Scholar] [CrossRef]
- Namdar, A.; Samet, H.; Allahbakhshi, M.; Tajdinian, M.; Ghanbari, T. A robust stator inter-turn fault detection in induction motor utilizing kalman filter-based algorithm. Measurement 2022, 187, 110181. [Google Scholar] [CrossRef]
- Vinayak, B.; Anand, K.; Jagadanand, G. Wavelet-based real-time stator fault detection of inverter-fed induction motor. IET Electr. Power Appl. 2020, 14, 82–90. [Google Scholar] [CrossRef]
- Ben Abid, F.; Sallem, M.; Braham, A. Robust interpretable deep learning for intelligent fault diagnosis of induction motors. IEEE Trans. Instrum. Meas. 2020, 69, 3506–3515. [Google Scholar] [CrossRef]
- Hasan, M.J.; Islam, M.M.M.; Kim, J.M. Bearing fault diagnosis using multidomain fusion-based vibration imaging and multitask learning. Sensors 2022, 22, 56. [Google Scholar] [CrossRef]
- Karabacak, Y.E.; Özmen, N.G.; Gümüşel, L. Intelligent worm gearbox fault diagnosis under various working conditions using vibration, sound and thermal features. Appl. Acoust. 2022, 186, 108463. [Google Scholar] [CrossRef]
- Mao, W.; Feng, W.; Liu, Y.; Zhang, D.; Liang, X. A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis. Mech. Syst. Signal Process. 2021, 150, 107233. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Y.; Jia, M.; Zhu, Y. A multi-stage hybrid fault diagnosis approach for rolling element bearing under various working conditions. IEEE Access 2019, 7, 138426–138441. [Google Scholar] [CrossRef]
- Jan, S.; Lee, Y.-D.; Shin, J. Sensor fault classification based on support vector machine and statistical time-domain features. IEEE Access 2017, 5, 8682–8690. [Google Scholar] [CrossRef]
- Cui, L.; Huang, J.; Zhang, F. Quantitative and localization diagnosis of a defective ball bearing based on vertical horizontal synchronization signal analysis. IEEE Trans. Ind. Electron. 2017, 66, 8695–8706. [Google Scholar] [CrossRef]
- Shao, S.-Y.; Sun, W.-J.; Yan, R.-Q.; Wang, P.; Gao, R.X. A deep learning approach for fault diagnosis of induction motors in manufacturing. Chin. J. Mech. Eng. 2017, 30, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Ye, Y.; Huang, B.; Su, J. Bearing vibration detection and analysis using enhanced fast Fourier transform algorithm. Adv. Mech. Eng. 2016, 8, 1687814016675080. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Zhang, Z.; Gong, T. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing 2016, 171, 837–853. [Google Scholar] [CrossRef]
- Li, L.; Han, N.N.; Jiang, Q.T. A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies. Digit. Signal Process. 2022, 120, 103262. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Qin, X.; Sun, Y.T. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network. Shock Vib. 2018, 37, 124–131. [Google Scholar]
- Ali, J.B.; Fnaiech, N.; Saidi, L.; Chebel-Morello, B.; Fnaiech, F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015, 89, 16–27. [Google Scholar]
- Yu, X.; Dong, F.; Ding, E.; Wu, S.; Fan, C. Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection. IEEE Access 2017, 6, 3715–3730. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 2019, 66, 3208–3216. [Google Scholar] [CrossRef]
- Li, D.; Zhang, M.; Kang, T.; Li, B.; Xiang, H.; Wang, K.; Pei, Z.; Tang, X.; Wang, P. Fault diagnosis of rotating machinery based on dual convolutional-capsule network (DC-CN). Measurement 2022, 187, 110258. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Alippi, C.; Huang, B.; Liu, D. Explainable Intelligent Fault Diagnosis for Nonlinear Dynamic Systems: From Unsupervised to Supervised Learning. TechRxiv 2022. Preprint. [Google Scholar]
- Shi, H.; Guo, L.; Tan, S.; Bai, X.; Sun, J. Rolling bearing initial fault detection using long short-term memory recurrent network. IEEE Access 2019, 7, 171559–171569. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Y.; Wu, X. Gearbox bearing fault diagnosis based on SANC and 1-D CNN. Shock Vib. 2020, 39, 204–209. [Google Scholar]
- Zhu, X.; Hou, D.; Zhou, P.; Han, Z.; Yuan, Y.; Zhou, W.; Yin, Q. Rotor fault diagnosis using a convolutional neural network with symmetrized dot pattern images. Measurement 2019, 138, 526–535. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, B.; Yang, T.; Lyu, D.; Gao, W. Multitask Convolutional Neural Network with Information Fusion for Bearing Fault Diagnosis and Localization. IEEE Trans. Ind. Electron. 2019, 67, 8005–8015. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, S.; Tang, J. Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning. IEEE Access 2018, 6, 26241–26253. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA Trans. 2018, 77, 167–178. [Google Scholar] [CrossRef] [PubMed]
Layer | Node | Stride | Output Size | Layer | Node | Stride | Output Size |
---|---|---|---|---|---|---|---|
CNN Branch | GRU Branch | ||||||
6 × 32 × 32 | 1024 | ||||||
Conv-BN | 32 | 2 | 32 × 16 × 16 | FC | 990 | - | 990 |
Channel-Position Attention | - | 1 | 32 × 16 × 16 | GRU | 330 | - | 330 |
Conv-BN | 64 | 2 | 64 × 8 × 8 | Attention | - | - | 330 |
Channel-Position Attention | - | 1 | 64 × 8 × 8 | GRU | 110 | - | 110 |
Conv-BN | 128 | 2 | 128 × 8 × 8 | Attention | - | - | 110 |
Channel-Position Attention | - | 1 | 128 × 8 × 8 | FC | 128 | - | 128 |
FC | 1024 | - | 1024 | ||||
Concat (1152) | |||||||
FC (512)-FC (128) | |||||||
Softmax (8) |
Label | Types | Numbers |
---|---|---|
0 | Normal | 1000 |
1 | 2 turns short circuit | 1000 |
2 | 4 turns short circuit | 1000 |
3 | 8 turns short circuit | 1000 |
4 | Air gap eccentricity | 1000 |
5 | Broken rotor strip | 1000 |
6 | Bearing seat damage | 1000 |
7 | Bearing wear | 1000 |
Label | Types | Accuracy |
---|---|---|
0 | Normal | 100% |
1 | 2 turns short circuit | 99.67% |
2 | 4 turns short circuit | 99.33% |
3 | 8 turns short circuit | 100% |
4 | Air gap eccentricity | 100% |
5 | Broken rotor strip | 100% |
6 | Bearing seat damage | 99% |
7 | Bearing wear | 100% |
Model | Accuracy |
---|---|
GRU | 98.58% |
CNN | 98.83% |
CNN + GRU | 98.97% |
CNN + GRU + Attention | 99.56% |
CNN + GRU + Attention + Auxiliary Loss | 99.75% |
Model | Accuracy |
---|---|
BP | 96.12% |
1D-CNN | 98.24% |
Multichannel-CNN | 99.17% |
Inception-LSTM | 99.34% |
STNet | 99.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, C.; Zhu, J.; Xu, F. Fault Diagnosis of Motor Vibration Signals by Fusion of Spatiotemporal Features. Machines 2022, 10, 246. https://doi.org/10.3390/machines10040246
Wang L, Zhang C, Zhu J, Xu F. Fault Diagnosis of Motor Vibration Signals by Fusion of Spatiotemporal Features. Machines. 2022; 10(4):246. https://doi.org/10.3390/machines10040246
Chicago/Turabian StyleWang, Lijing, Chunda Zhang, Juan Zhu, and Fengxia Xu. 2022. "Fault Diagnosis of Motor Vibration Signals by Fusion of Spatiotemporal Features" Machines 10, no. 4: 246. https://doi.org/10.3390/machines10040246
APA StyleWang, L., Zhang, C., Zhu, J., & Xu, F. (2022). Fault Diagnosis of Motor Vibration Signals by Fusion of Spatiotemporal Features. Machines, 10(4), 246. https://doi.org/10.3390/machines10040246