An Adaptive Covariance Scaling Estimation of Distribution Algorithm
<p>The visual structure of the covariance scaling strategy.</p> "> Figure 2
<p>The change curves of <span class="html-italic">cs</span> and <span class="html-italic">sr</span> with the proposed two adaptive strategies.</p> "> Figure 3
<p>The process of the cross-generation individual selection strategy.</p> ">
Abstract
:1. Introduction
- (1)
- An adaptive covariance scaling method is proposed to adaptively enlarge the sampling range of the estimated probability distribution. Different from most existing covariance scaling methods, we scale the covariance by calculating the covariance based on an amplified number of promising individuals. As a result, not only could the learned structure of the optimization problem captured by the algorithm be improved but the covariance in different directions is also scaled differently. In this way, it is expected that the sampled offspring are not only of high quality, but they are also diversified in different areas.
- (2)
- An adaptive selection of promising individuals for the estimation of the mean vector is further designed by adaptively decreasing the selection ratio, which is the number of the selected promising individuals out of the whole population. In this way, the estimated mean vector, namely the center of the offspring to be sampled, is gradually close to the promising areas that the current population covers. Therefore, the search process is gradually biased toward exploiting the solution space to refine the solution accuracy. However, it should be mentioned that such a bias is not greedy and not at the serious sacrifice of the population diversity because of the aforementioned covariance scaling technique.
- (3)
- A cross-generation individual selection scheme, for the parent population to estimate the probability distribution, is devised by combining the sampled offspring in the last generation and the one in the current generation to select parent individuals for the next generation. Instead of directly utilizing the sampled offspring as the parent population for the next generation in most existing MGEDAs, the proposed ACSEDA combines the sampled offspring in the last generation and the one in the current generation to select the top half best individuals to form the parent population for the next generation. In this way, the parent population formed is neither too crowded nor too scattered, and thus, the estimated probability distribution is of high quality to sample slightly diversified offspring to approach the optimal areas.
- (4)
- With the above mechanisms, the proposed ACSEDA is expected to compromise intensification and diversification of the search process well to explore and exploit the solution space and could thus achieve promising performance.
2. Related Work
2.1. Basic GEDA
Algorithm1: The Procedure of GEDA |
Input: population size PS, selection ratio sr; 1: Set g = 0, and randomly initialize the population Pg; 2: Obtain the global best solution Gbest; 3: Repeat 4: Select promising solutions Sg from Pg; 5: Build a Gaussian probability distribution model Gg based on Sg; 6: Randomly generate a new population Pg+1 by sampling from Gg; 7: Update the global best solution Gbest; 8: g = g + 1; 9: Until the stopping criterion is met. Output: the global best solution Gbest; |
- (1)
- UGEDAs: In UGEDAs [29,45,46], each variable is considered to be separable and independent on each other. As a result, the probability distribution of D variables can be estimated separately, and the joint probability distribution of D variables is computed as follows:
- (2)
- MGEDAs: In MGEDAs [33,34,35,36], the correlations between variables are taken into consideration to estimate the probability distribution. Consequently, different from UGEDAs, the probability distribution of D variables in MGEDAs is estimated together, and the joint probability distribution of D variables is computed as follows:Based on the estimated joint probability distribution, a new solution is constructed by jointly sampling values for all variables, randomly, from the multivariate Gaussian distribution model. In general, to make the sampling of new solutions simple, a modified version presented below is usually utilized to generate the offspring in most MGEDAs [32,35]:
2.2. Recent Advance of GEDAs
3. Proposed ACSEDA
3.1. Adaptive Covariance Scaling
- (1)
- By introducing more promising individuals, the proposed scaling method enlarges the covariance differently in different directions between variables and thus it implicitly takes the difference between variables into consideration. However, existing scaling methods [37] enlarge the covariance with a same scalar and hence they do not consider the difference between variables.
- (2)
- The proposed scaling method is likely to better capture the structure of the optimization problem with respect to the correlations between variables by introducing more promising individuals. Nevertheless, the structure captured by existing scaling methods remains unchanged after the scaling.
3.2. Adaptive Promising Individuals Selection
- (1)
- srdecreases dramatically in the early stage, and mildly in the late stage, while cs decreases mildly in the early stage, and dramatically in the late stage. This actually matches the expectation that the proposed ACSEDA should explore the solution space in the early stage without serious loss of convergence, while it should exploit the search space in the late stage without serious sacrifice of search diversity. For one thing, in the early stage, sr decreases rapidly and thus the estimated mean vector is close to the promising areas that the current population lies. However, it should be mentioned that in such a situation, the sampling diversity of the estimated probability distribution is not declined, because the estimated covariance is large due to the large cs. On the contrary, in this situation, the sampling quality of the estimated probability distribution could be improved due to the high-quality mean vector and thus the population could effectively explore the search space to find promising areas in the early stage. In the late stage, sr decreases mildly, while cs descends quickly. In this situation, the quality of the mean vector is gradually promoted by approaching the promising areas closer and closer. At the same time, the sampling range of the estimated distribution gradually shrinks due to the covariance estimated on the reduced number of promising individuals. Therefore, in the late stage, ACSEDA gradually biases to exploiting the found promising areas to improve the solution quality. However, it should be mentioned that such a bias is not at the serious sacrifice of the search diversity because of the proposed covariance scaling technique.
- (2)
- csis always larger than sr during the evolution and the gap between cs and sr gradually shrinks as the evolution goes. This indicates that during the evolution, compared with traditional GEDAs, the covariance is always amplified, so that the estimated probability distribution could sample diversified offspring around the estimated mean vector with high quality. In addition, the gradually narrowed difference between sr and cs indicates that the scaling of the covariance is gradually declined. This implies that the proposed ACSEDA gradually concentrates on exploiting the solution space to refine the solution accuracy.
3.3. Cross-Generation Individual Selection for Parent Population
- (1)
- Individuals in the parent populationare diversified.The sampled offspring in the last generationusually have big difference with the offspring in the current generation.Combining them together to select individuals is less likely to generate crowded individuals for the parent population. As a result, the estimated probability distribution model is less likely to fall into local areas andat the same time, has a wide sampling range to generate diversified offspring. In this way, ACSEDA could preserve high search diversity during the evolution.
- (2)
- With this strategy, the latest historical promising individuals in the last generation could be integrated with those in the current offspring. As a consequence, individuals in the parent population are not only diversified, but also of high quality. Hence, the estimated probability distribution is of high quality to generate more promising offspring. By this means, the convergence of ACSEDA could be guaranteed.
- (3)
- With this selection strategy, ACSEDA is further expected to preserve a good compromise between exploration and exploitation to search the solution space effectively.Experiments conducted in Section 4will demonstrate the effectiveness of the proposed cross-generation individual selection strategy.
3.4. Overall Procedure of ACSEDA
Algorithm 2: The Procedure of ACSEDA |
Input: population size PS; 1: Set FEs = 0; 2: Initialize PS individuals randomly and evaluate their fitness; 3: FEs = FEs + PS; 4: Obtain the global best solution Gbest and store the current population; 5: While (FEs < FEsmax) 6: Calculate the selection ratio sr according to Equation (11); 7: Select promising solutions from the population and calculate the mean value μ using Equation (3); 8: Calculate the covariance scaling parameter cs according to Equation (10); 9: Estimate the covariance matrix C according to Equation (9); 10: Randomly sample PS new individuals based on the estimated multivariate Gaussian model, evaluate their fitness and store them; 11: FEs = FEs + PS; 12: Combine the offspring in the last generation and the offspring in the current generation to select PS better individuals to form the parent population for the next generation; 13: Update the global best solution Gbest; 14: Execute local search 2 times on Gbest; 15: FEs = FEs +2; 16: End While Output: the global best solution Gbest; |
4. Experimental Studies
4.1. Experimental Settings
4.2. Comparison with State-of-the-Art EDAs
- (1)
- As shown in the last row of Table 2, in view of the Friedman test, it is found that the proposed ACSEDA obtains the smallest rank and this rank value is much smaller than those of the other algorithms. This indicates that ACSEDA achieves the best overall performance on the 30-D CEC 2014 benchmark set and obtains significant superiority to the compared algorithms.
- (2)
- As shown in the second-to-last row of Table 2, from the perspective of the Wilcoxon rank-sum test, we can see that ACSEDA achieves significantly better performance than the compared algorithms on at least 23 problems, except for EDA2 and MA-ES. Compared with EDA2, ACSEDA shows significant superiority on 13 problems, and only presents inferiority on 6 problems. Competing with MA-ES, ACSEDA presents significant dominance on 19 problems, and it loses the competition on 10 problems.
- (3)
- With respect to the optimization performance on different kinds of problems, on the three unimodal problems, both ACSEDA and EDA2 achieve the true global optima of these three problems and thus show significantly better performance than the other 6 EDA variants. On the 13 simple multimodal problems, ACSEDA is significantly superior to EDAVESR, EDA/LS, EDA/LS-MS, and TRA-EDA on 10 problems, and it also beats EDA2, BUMDA, and MA-ES down on 8, 9, and 9 problems, respectively. In terms of the six hybrid problems, the optimization performance of ACSEDA is significantly better than the compared EDA variants on all these functions, except for EDA2. In comparison with EDA2, ACSEDA shows great superiority on three problems and achieves equivalent performance with EDA2 on three problems. In particular, on these six hybrid problems, ACSEDA shows no inferiority to all the compared EDA variants. As for the eight composition problems, it is observed that ACSEDA is significantly better than EDA/LS and EDA/LS-MS on all these problems. In comparison with TRA-EDA and BUMDA, it outperforms them on six and five problems, respectively. Particularly, on this kind of problem, ACSEDA is a litter inferior to EDA2 and MA-ES.
- (4)
- To sum up, it is observed that ACSEDA shows very competitive, or even significantly better, performance in solving the 30-D CEC 2014 benchmark problems, as compared with the selected state-of-the-art EDA variants. In particular, encountered with complicated optimization problems, such as multimodal problems, hybrid problems, and composition problems, the proposed ACSEDA shows great superiority to the compared algorithms, which indicates that it is very promising for complicated problems.
- (1)
- In terms of the Friedman test, as shown in the last row of Table 3, it is found that ACSEDA still achieves the lowest rank among all algorithms. This verifies that ACSEDA still obtains the best overall performance on the 50-D CEC 2014 problems.
- (2)
- With respect to the Wilcoxon rank sum test, as shown in the second last row of Table 3, ACSEDA outperforms EDAVERS, EDA/LS, EDA/LS-MS, TRA-EDA, and BUMDA significantly on 24, 28, 28, 28, and 21 problems, respectively. Compared with EDA2, ACSEDA attains much better performance on 13 problems and equivalent performance on 9 problems. Competing with MA-ES, ACSEDA significantly outperforms it on 19 problems and only shows inferiority on 11 problems.
- (3)
- Regarding the performance on different kinds of optimization problems, on the three unimodal problems, except for EDA2 and MA-ES, ACSEDA still presents great superiority to the other compared EDA variants on all the three problems. In particular, both ACSEDA and EDA2 locate the true global optimum of F3, while ACSEDA displays great dominance over EDA2 on the other two problems. Compared with MA-ES, ACSEDA is much better on two problems, and it obtains worse performance on only one problem. On the 13 simple multimodal functions, ACSEDA significantly outperforms EDAVERS, EDA/LS, EDA/LS-MS, and TRA-EDA on 11 problems, performs significantly better than MA-ES on 10 problems, and wins the competition on 7 problems, as competed with both EDA2 and BUMDA. On the 6 hybrid problems, ACSEDA is significantly superior to the compared EDA variants on all the six problems, except for EDA2. In competition with EDA2, ACSEDA loses the competition on five problems. On the 8 composition problems, ACSEDA is better than EDA/LS, EDA/LS-MS, TRA-EDA on all eight problems. At the same time, it achieves equivalent or even much better performance than EDA2, EDAVERS, and BUMDA on at least six problems. However, ACSEDA shows inferior performance to MA-ES on seven problems.
- (4)
- In summary, encountered with the 50-D CEC 2014 problems, ACSEDA still exhibits significantly better performance than the compared EDA variants. This further demonstrates that ACSEDA is promising for both simple optimization problems, such as unimodal problems, and complicated optimization problems, such as hybrid problems and composition problems.
- (1)
- From the averaged rank obtained from the Friedman test, it is observed that ACSEDA still obtains the smallest rank value among all algorithms. This means that ACSEDA consistently achieves the best overall optimization performance on the 100-D CEC 2014 benchmark set.
- (2)
- According to the results of the Wilcoxon rank sum test, ACSEDA presents great dominance to EDAVERS, EDA/LS, EDA/LS-MS, and TRA-EDA on 23, 26, 24, and 28 problems, respectively. In comparison with EDA2 and BUMDA, ACSEDA obtains competitive or even better performance on 20 and 22 problems, respectively. Compared with MA-ES, ACSEDA achieves much better performance on 15 problems and presents inferiority on 15 problems as well. This indicates that ACSEDA is very competitive to MA-ES on the 100-D CEC2014 benchmark problems.
- (3)
- Concerning the optimization performance on different kinds of optimization problems, on the three unimodal problems, ACSEDA outperforms EDAVERS, EDA/LS-MS, TRA-EDA, and BUMDA on all these three problems, and it performs much better than EDA/LS on two problems. However, it loses the competition on these three problems to both EDA2 and MA-ES. When it comes to the 13 simple multimodal functions, ACSEDA shows significantly better performance than EDAVERS, EDA/LS, EDA/LS-MS, TRA-EDA, and MA-ES on at least 10 problems, and presents great superiority to EDA2 on 8 problems. On these 13 problems, ACSEDA and BUMDA achieve very similar performance. Encountered with the six hybrid problems, ACSEDA exhibits much better performance than the compared EDA variants on at least five problems, except for EDA2. Faced with the eight composition problems, ACSEDA is better than EDA/LS, EDA/LS-MS, TRA-EDA, and BUMDA on at least five problems, presents very competitive performance with EDA2 and EDAVERS, and is only inferior to MA-ES.
- (4)
- To conclude, encountered with the 100-D CEC 2014 problems, ACSEDA still shows great superiority to the compared state-of-the-art EDA variants in solving such high-dimensional problems. In particular, on the complicated problems with such high dimensionality, such as the hybrid problems and the composition problems, ACSEDA still presents significant dominance to most of the compared algorithms. This further demonstrates that the proposed ACSEDA is promising for optimization problems.
4.3. Deep Investegation on ACSEDA
4.3.1. Effectiveness of the Covariance Scaling Strategy
- (1)
- With respect to the comparison results of each part, it is found that a larger cs than sr helps ACSEDA achieve much better performance than the one with cs = sr. In particular, it is interesting to find that the superiority of the ACSEDA with a larger cs (than sr) to the one without the covariance scaling (cs = sr) is particularly significant in solving complicated problems such as F20-F30. This demonstrates the covariance scaling technique is helpful for ACSEDA to obtain promising performance in solving optimization problems, especially on complicated problems.
- (2)
- It is also interesting to find that neither a too small cs, nor a too large cs (compared with sr) are suitable for ACSEDA to achieve promising performance. For instance, when sr = 0.1, we find that, though ACSEDA with a too-small cs (cs ≤ 0.4) achieves much better performance than the one with cs = sr (namely without covariance scaling), its performance is much worse than the ones with a larger cs (0.4 < cs < 0.8). On the contrary, when ACSEDA has a too large cs (cs ≥ 0.8), its performance degrades dramatically, as compared with the ones with a proper cs. A similar situation occurs to ACSEDA with the other settings of sr when cs is either too large or too small. Such experimental results verify the analysis presented in Section 3.1.
4.3.2. Effectiveness of the Proposed Adaptive Covariance Scaling Strategy
- (1)
- As a whole, no matter if it is from the perspective of the averaged rank obtained from the Friedman test or from the perspective of the number of problems where the algorithm achieves the best results, the ACSEDA with the proposed adaptive cs obtains much better performance than those with different fixed cs. This verifies that the proposed adaptive cs strategy is effective to help ACSEDA achieve promising performance.
- (2)
- Under the same set of sr, we find that the optimal fixed cs for ACSEDA to achieve the best performance is different on different problems. This indicates that the optimal setting of cs is not consistent for all problems. With the proposed adaptive strategy, we can see that not only is the sensitivity of ACSEDA to cs alleviated, but its optimization performance is also largely promoted.
4.3.3. Effectiveness of the Proposed Adaptive Promising Selection Strategy
- (1)
- In view of the averaged rank obtained from the Friedman test, the ACSEDA with the adaptive sr achieves the best overall performance than the ones with different fixed sr. This verifies the effectiveness of the proposed adaptive promising individual selection strategy for the estimation of the mean vector.
- (2)
- For different problems, the optimal sr is different for ACSEDA to achieve the best performance. In particular, we find that a small sr tends to help ACSEDA obtain better performance than a large sr. The proposed adaptive strategy, based on Equation (11), matches this observation that sr is dramatically decreased to a small value in the early stage, and then, it mildly declines as the evolution goes as stated in Section 3.2.
4.3.4. Effectiveness of the Proposed Cross-Generation Individual Selection Strategy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hasan, M.Z.; Al-Rizzo, H. Optimization of Sensor Deployment for Industrial Internet of Things Using a Multiswarm Algorithm. IEEE Internet Things J. 2019, 6, 10344–10362. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Yang, M.; Kong, F. Secure Outsourcing of Large-scale Convex Optimization Problem in Internet of Things. IEEE Internet Things J. 2021, 1. [Google Scholar] [CrossRef]
- Zhou, X.G.; Peng, C.X.; Liu, J.; Zhang, Y.; Zhang, G.J. Underestimation-Assisted Global-Local Cooperative Differential Evolution and the Application to Protein Structure Prediction. IEEE Trans. Evol. Comput. 2020, 24, 536–550. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, W.; Chen, C.; Yen, G.G. A Consensus Community-Based Particle Swarm Optimization for Dynamic Community Detection. IEEE Trans. Cybern. 2020, 50, 2502–2513. [Google Scholar] [CrossRef]
- Chen, W.N.; Tan, D.Z.; Yang, Q.; Gu, T.; Zhang, J. Ant Colony Optimization for the Control of Pollutant Spreading on Social Networks. IEEE Trans. Cybern. 2020, 50, 4053–4065. [Google Scholar] [CrossRef]
- Shen, Y.; Li, W.; Li, J. An Improved Estimation of Distribution Algorithm for Multi-compartment Electric Vehicle Routing Problem. J. Syst. Eng. Electron. 2021, 32, 365–379. [Google Scholar]
- Li, X.; Tang, K.; Omidvar, M.N.; Yang, Z.; Qin, K.; China, H. Benchmark Functions for the CEC 2013 Special Session and Competition on Large-scale Global Optimization. 2013. Available online: https://www.tflsgo.org/assets/cec2018/cec2013-lsgo-benchmark-tech-report.pdf (accessed on 6 December 2021).
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-parameter Optimization. 2017. Available online: https://moam.info/problem-definitions-and-evaluation-criteria-for-the-_5bad2530097c479e798b46a8.html (accessed on 6 December 2021).
- Wei, F.F.; Chen, W.N.; Yang, Q.; Deng, J.; Luo, X.N.; Jin, H.; Zhang, J. A Classifier-Assisted Level-Based Learning Swarm Optimizer for Expensive Optimization. IEEE Trans. Evol. Comput. 2021, 25, 219–233. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.N.; Gu, T.; Jin, H.; Mao, W.; Zhang, J. An Adaptive Stochastic Dominant Learning Swarm Optimizer for High-Dimensional Optimization. IEEE Trans. Cybern. 2020, 1–17. [Google Scholar] [CrossRef]
- Tanweer, M.R.; Suresh, S.; Sundararajan, N. Dynamic Mentoring and Self-regulation Based Particle Swarm Optimization Algorithm for Solving Complex Real-world Optimization Problems. Inf. Sci. 2016, 326, 1–24. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Tong, Y. Big Data Analysis and Scheduling Optimization System Oriented Assembly Process for Complex Equipment. IEEE Access 2018, 6, 36479–36486. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J. A Level-Based Learning Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Evol. Comput. 2018, 22, 578–594. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.; Gu, T.; Zhang, H.; Deng, J.D.; Li, Y.; Zhang, J. Segment-Based Predominant Learning Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Cybern. 2017, 47, 2896–2910. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Chen, W.; Yu, Z.; Gu, T.; Li, Y.; Zhang, H.; Zhang, J. Adaptive Multimodal Continuous Ant Colony Optimization. IEEE Trans. Evol. Comput. 2017, 21, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, R.; Ishibuchi, H. A Review of Evolutionary Multimodal Multiobjective Optimization. IEEE Trans. Evol. Comput. 2020, 24, 193–200. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.; Zhang, J. Evolution Consistency Based Decomposition for Cooperative Coevolution. IEEE Access 2018, 6, 51084–51097. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.N.; Gu, T.; Zhang, H.; Yuan, H.; Kwong, S.; Zhang, J. A Distributed Swarm Optimizer with Adaptive Communication for Large-Scale Optimization. IEEE Trans. Cybern. 2020, 50, 3393–3408. [Google Scholar] [CrossRef]
- Doerr, B.; Krejca, M.S. Significance-Based Estimation-of-Distribution Algorithms. IEEE Trans. Evol. Comput. 2020, 24, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, M.; Pelikan, M. An Introduction and Survey of Estimation of Distribution Algorithms. Swarm Evol. Comput. 2011, 1, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Larrañaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Bao, L.; Sun, X.; Gong, D.; Zhang, Y. Multi-source Heterogeneous User Generated Contents-driven Interactive Estimation of Distribution Algorithms for Personalized Search. IEEE Trans. Evol. Comput. 2021, 1. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.; Li, Y.; Chen, C.L.P.; Xu, X.; Zhang, J. Multimodal Estimation of Distribution Algorithms. IEEE Trans. Cybern. 2017, 47, 636–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, W.; Pi, D.; Shao, Z. A Pareto-Based Estimation of Distribution Algorithm for Solving Multiobjective Distributed No-Wait Flow-Shop Scheduling Problem with Sequence-Dependent Setup Time. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1344–1360. [Google Scholar] [CrossRef]
- Shi, W.; Chen, W.; Lin, Y.; Gu, T.; Kwong, S.; Zhang, J. An Adaptive Estimation of Distribution Algorithm for Multipolicy Insurance Investment Planning. IEEE Trans. Evol. Comput. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Han, T.; Zhao, H. An Estimation of Distribution Algorithm with Multi-Leader Search. IEEE Access 2020, 8, 37383–37405. [Google Scholar] [CrossRef]
- Krejca, M.S.; Witt, C. Theory of Estimation-of-distribution Algorithms. In Theory of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 405–442. [Google Scholar]
- Pelikan, M.; Hauschild, M.W.; Lobo, F.G. Estimation of Distribution Algorithms. In Springer Handbook of Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 899–928. [Google Scholar]
- Montaño, O.D.L.; Gómez-Castro, F.I.; Gutierrez-Antonio, C. Design and Optimization of a Shell-and-tube Heat Exchanger Using the Univariate Marginal Distribution Algorithm. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2021; Volume 50, pp. 43–49. [Google Scholar]
- Muelas, S.; Mendiburu, A.; LaTorre, A.; Peña, J.-M. Distributed Estimation of Distribution Algorithms for Continuous Optimization: How Does the Exchanged Information Influence Their Behavior? Inf. Sci. 2014, 268, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. On Stability of Fixed Points of Limit Models of Univariate Marginal Distribution Algorithm and Factorized Distribution Algorithm. IEEE Trans. Evol. Comput. 2004, 8, 80–93. [Google Scholar] [CrossRef]
- Dong, W.; Yao, X. Unified Eigen Analysis on Multivariate Gaussian Based Estimation of Distribution Algorithms. Inf. Sci. 2008, 178, 3000–3023. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Wood, I. TAM-EDA: Multivariate T Distribution, Archive and Mutation Based Estimation of Distribution Algorithm. Anziam J. 2012, 54, C720–C746. [Google Scholar] [CrossRef]
- Gao, K.; Harrison, J.P. Multivariate Distribution Model for Stress Variability Characterisation. Int. J. Rock Mech. Min. Sci. 2018, 102, 144–154. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, X.; Liu, H. Estimation of Distribution Algorithm Based on Multivariate Gaussian Copulas. In Proceedings of the IEEE International Conference on Progress in Informatics and Computing, Shanghai, China, 10–12 December 2010; pp. 254–257. [Google Scholar]
- Yang, G.; Li, H.; Yang, W.; Fu, K.; Sun, Y.; Emery, W.J. Unsupervised Change Detection of SAR Images Based on Variational Multivariate Gaussian Mixture Model and Shannon Entropy. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 826–830. [Google Scholar] [CrossRef]
- Liang, Y.; Ren, Z.; Yao, X.; Feng, Z.; Chen, A.; Guo, W. Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive. IEEE Trans. Cybern. 2020, 50, 140–152. [Google Scholar] [CrossRef]
- Zhou, A.; Sun, J.; Zhang, Q. An Estimation of Distribution Algorithm with Cheap and Expensive Local Search Methods. IEEE Trans. Evol. Comput. 2015, 19, 807–822. [Google Scholar] [CrossRef]
- Valdez, S.I.; Hernández, A.; Botello, S. A Boltzmann Based Estimation of Distribution Algorithm. Inf. Sci. 2013, 236, 126–137. [Google Scholar] [CrossRef]
- Ceberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J.A. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 2012, 1, 103–117. [Google Scholar] [CrossRef]
- Ren, Z.; Liang, Y.; Wang, L.; Zhang, A.; Pang, B.; Li, B. Anisotropic Adaptive Variance Scaling for Gaussian Estimation of Distribution Algorithm. Knowl.-Based Syst. 2018, 146, 142–151. [Google Scholar] [CrossRef]
- Bosman, P.A.; Grahl, J.; Rothlauf, F. SDR: A Better Trigger for Adaptive Variance Scaling in Normal EDAs. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 7–11 July 2007; pp. 492–499. [Google Scholar] [CrossRef]
- Grahl, J.; Bosman, P.A.; Rothlauf, F. The Correlation-Triggered Adaptive Variance Scaling IDEA. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 397–404. [Google Scholar]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-parameter Numerical Optimization. In Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report; Nanyang Technological University: Singapore, 2013. [Google Scholar]
- Bronevich, A.G.; De Oliveira, J.V. On the Model Updating Operators in Univariate Estimation of Distribution Algorithms. Nat. Comput. 2016, 15, 335–354. [Google Scholar] [CrossRef]
- Rastegar, R. On the Optimal Convergence Probability of Univariate Estimation of Distribution Algorithms. Evol. Comput. 2011, 19, 225–248. [Google Scholar] [CrossRef] [Green Version]
- Krejca, M.S. Theoretical Analyses of Univariate Estimation-of-Distribution Algorithms; Universität Potsdam: Potsdam, Germany, 2019. [Google Scholar]
- Wang, X.; Zhao, H.; Han, T.; Wei, Z.; Liang, Y.; Li, Y. A Gaussian Estimation of Distribution Algorithm with Random Walk Strategies and Its Application in Optimal Missile Guidance Handover for Multi-UCAV in Over-the-Horizon Air Combat. IEEE Access 2019, 7, 43298–43317. [Google Scholar] [CrossRef]
- Ren, Z.; He, C.; Zhong, D.; Huang, S.; Liang, Y. Enhance Continuous Estimation of Distribution Algorithm by Variance Enlargement and Reflecting Sampling. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 3441–3447. [Google Scholar]
- Yang, P.; Tang, K.; Lu, X. Improving Estimation of Distribution Algorithm on Multimodal Problems by Detecting Promising Areas. IEEE Trans. Cybern. 2015, 45, 1438–1449. [Google Scholar] [CrossRef]
- Yuan, B.; Gallagher, M. On the Importance of Diversity Maintenance in Estimation of Distribution Algorithms. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 719–726. [Google Scholar]
- Pošík, P. Preventing Premature Convergence in A Simple EDA Via Global Step Size Setting. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Technische Universität, Dortmund, Germany, 13–17 September 2008; pp. 549–558. [Google Scholar]
- Cai, Y.; Sun, X.; Xu, H.; Jia, P. Cross Entropy and Adaptive Variance Scaling in Continuous EDA. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 7–11 July 2007; pp. 609–616. [Google Scholar]
- Emmerich, M.; Shir, O.M.; Wang, H. Evolution Strategies. In Handbook of Heuristics; Martí, R., Panos, P., Resende, M.G.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–31. [Google Scholar]
- Ros, R.; Hansen, N. A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity. In Proceedings of the Parallel Problem Solving from Nature–PPSN X, Berlin/Heidelberg, Germany, 13–17 September 2008; pp. 296–305. [Google Scholar]
- Akimoto, Y.; Hansen, N. Diagonal Acceleration for Covariance Matrix Adaptation Evolution Strategies. Evol. Comput. 2020, 28, 405–435. [Google Scholar] [CrossRef] [Green Version]
- Arabas, J.; Jagodziński, D. Toward a Matrix-Free Covariance Matrix Adaptation Evolution Strategy. IEEE Trans. Evol. Comput. 2020, 24, 84–98. [Google Scholar] [CrossRef]
- Beyer, H.; Sendhoff, B. Simplify Your Covariance Matrix Adaptation Evolution Strategy. IEEE Trans. Evol. Comput. 2017, 21, 746–759. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q. A Simple Yet Efficient Evolution Strategy for Large-Scale Black-Box Optimization. IEEE Trans. Evol. Comput. 2018, 22, 637–646. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Chen, Z.; Zhang, J.; Chen, W.N. Large-Scale Evolution Strategy Based on Search Direction Adaptation. IEEE Trans. Cybern. 2021, 51, 1651–1665. [Google Scholar] [CrossRef]
- Bosman, P.A.; Grahl, J.; Thierens, D. Enhancing the Performance of Maximum–likelihood Gaussian EDAs Using Anticipated Mean Shift. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Technische Universität, Dortmund, Germany, 13–17 September 2008; pp. 133–143. [Google Scholar]
- PourMohammadBagher, L.; Ebadzadeh, M.M.; Safabakhsh, R. Graphical Model Based Continuous Estimation of Distribution Algorithm. Appl. Soft Comput. 2017, 58, 388–400. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.-N.; Zhang, J. Probabilistic Multimodal Optimization. In Metaheuristics for Finding Multiple Solutions; Preuss, M., Epitropakis, M.G., Li, X., Fieldsend, J.E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 191–228. [Google Scholar]
- Huang, X.; Jia, P.; Liu, B. Controlling Chaos by an Improved Estimation of Distribution Algorithm. Math. Comput. Appl. 2010, 15, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Zhou, A.; Zhang, G. An Estimation of Distribution Algorithm Guided by Mean Shift. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 3268–3275. [Google Scholar]
- Liu, J.; Wang, Y.; Teng, H. Variance Analysis and Adaptive Control in Intelligent System Based on Gaussian Model. Int. J. Model. Identif. Control 2013, 18, 26–33. [Google Scholar] [CrossRef]
- Santana, R.; Larranaga, P.; Lozano, J.A. Adaptive Estimation of Distribution Algorithms. In Adaptive and Multilevel Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 136, pp. 177–197. [Google Scholar]
- Dong, W.; Chen, T.; Tiňo, P.; Yao, X. Scaling Up Estimation of Distribution Algorithms for Continuous Optimization. IEEE Trans. Evol. Comput. 2013, 17, 797–822. [Google Scholar] [CrossRef] [Green Version]
- Hansen, N. Towards a New Evolutionary Computation. Stud. Fuzziness Soft Comput. 2006, 192, 75–102. [Google Scholar]
- Hedar, A.-R.; Allam, A.A.; Fahim, A. Estimation of Distribution Algorithms with Fuzzy Sampling for Stochastic Programming Problems. Appl. Sci. 2020, 10, 6937. [Google Scholar] [CrossRef]
- Maza, S.; Touahria, M. Feature Selection for Intrusion Detection Using New Multi-objective Estimation of Distribution Algorithms. Appl. Intell. 2019, 49, 4237–4257. [Google Scholar] [CrossRef]
Algorithm | ACSEDA | EDA/LS | EDA2 | EDA/LS-MS | EDAVERS | BUMDA | TRA-EDA | MA-ES | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | PS | PS | M | Pb | Pc | θ | PS | l | PS | M | Pa | Pb | θ | PS | sr | PS | PS | sr | PS | mu | |
D | 30 | 1300 | 150 | 15 | 0.2 | 0.2 | 0.1 | 100 | 20 | 150 | 15 | 0.2 | 0.2 | 0.1 | 500 | 0.35 | 900 | 2500 | 0.2 | ||
50 | 1800 | 150 | 200 | 1000 | 600 | 1100 | 4700 | ||||||||||||||
100 | 3200 | 150 | 300 | 2000 | 700 | 1500 | 6000 |
F | Category | Quality | ACSEDA | EDA2 | EDAVERS | EDA/LS | EDA/LS-MS | TRA-EDA | BUMDA | MA-ES |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Unimodal Problems | Median | 0.00 × 100 | 0.00 × 100 | 6.48 × 104 | 1.90 × 10−9 | 1.83 × 10−9 | 6.94 × 107 | 1.15 × 108 | 1.42 × 10−14 |
Mean | 0.00 × 100 | 0.00 × 100 | 7.76 × 104 | 9.09 × 101 | 1.98 × 101 | 6.80 × 107 | 1.16 × 108 | 1.37 × 10−14 | ||
Std | 0.00 × 100 | 0.00 × 100 | 4.85 × 104 | 4.89 × 102 | 1.07 × 102 | 1.17 × 107 | 2.12 × 107 | 2.55 × 10−15 | ||
p-value | - | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.17 × 10−13+ | ||
F2 | Median | 0.00 × 100 | 0.00 × 100 | 2.54 × 103 | 1.48 × 10−11 | 4.59 × 10−11 | 6.61 × 109 | 1.80 × 104 | 2.84 × 10−14 | |
Mean | 0.00 × 100 | 0.00 × 100 | 2.36 × 103 | 2.52 × 10−10 | 1.45 × 10−10 | 6.58 × 109 | 5.15 × 105 | 2.65 × 10−14 | ||
Std | 0.00 × 100 | 0.00 × 100 | 8.94 × 102 | 5.04 × 10−10 | 2.43 × 10−10 | 1.05 × 109 | 2.45 × 106 | 7.09 × 10−15 | ||
p-value | - | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 7.15 × 10−13+ | ||
F3 | Median | 0.00 × 100 | 0.00 × 100 | 1.41 × 103 | 8.42 × 10−9 | 8.85 × 10−10 | 9.83 × 103 | 6.49 × 103 | 5.68 × 10−14 | |
Mean | 0.00 × 100 | 0.00 × 100 | 1.44 × 103 | 3.10 × 10−9 | 2.34 × 10−9 | 1.00 × 104 | 6.52 × 103 | 5.68 × 10−14 | ||
Std | 0.00 × 100 | 0.00 × 100 | 5.54 × 102 | 4.33 × 10−9 | 4.21 × 10−9 | 1.97 × 103 | 1.85 × 103 | 5.05 × 10−29 | ||
p-value | - | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.69 × 10−14+ | ||
F1–3 | w/t/l | - | 0/3/0 | 3/0/0 | 3/0/0 | 3/0/0 | 3/0/0 | 3/0/0 | 3/0/0 | |
F4 | Simple Multimodal Problems | Median | 3.25 × 100 | 0.00 × 100 | 6.39 × 10−1 | 1.02 × 10−9 | 4.75 × 10−9 | 7.93 × 102 | 9.74 × 101 | 5.68 × 10−14 |
Mean | 3.15 × 100 | 0.00 × 100 | 6.14 × 10−1 | 1.33 × 10−1 | 2.66 × 10−1 | 7.72 × 102 | 9.88 × 101 | 2.66 × 10−1 | ||
Std | 1.02 × 100 | 0.00 × 100 | 2.76 × 10−1 | 7.16 × 10−1 | 9.94 × 10−1 | 1.27 × 102 | 2.69 × 101 | 9.94 × 10−1 | ||
p-value | - | 1.21 × 10−12− | 3.82 × 10−10− | 2.15 × 10−10− | 1.41 × 10−9− | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.69 × 10−10− | ||
F5 | Median | 2.09 × 101 | 2.10 × 101 | 2.10 × 101 | 2.00 × 101 | 2.00 × 101 | 2.09 × 101 | 2.10 × 101 | 2.00 × 101 | |
Mean | 2.09 × 101 | 2.09 × 101 | 2.09 × 101 | 2.00 × 101 | 2.00 × 101 | 2.09 × 101 | 2.10 × 101 | 2.04 × 101 | ||
Std | 4.96 × 10−2 | 4.86 × 10−2 | 7.13 × 10−2 | 5.47 × 10−6 | 3.43 × 10−2 | 5.47 × 10−2 | 5.00 × 10−2 | 6.93 × 10−1 | ||
p-value | - | 7.01 × 10−2= | 7.48 × 10−2= | 1.17 × 10−11− | 9.37 × 10−12− | 8.77 × 10−1= | 2.32 × 10−2+ | 3.96 × 10−4− | ||
F6 | Median | 1.99 × 10−6 | 0.00 × 100 | 1.77 × 10−5 | 4.09 × 101 | 3.81 × 101 | 4.58 × 10−1 | 1.50 × 100 | 2.25 × 101 | |
Mean | 2.07 × 10−6 | 2.09 × 10−1 | 4.76 × 10−1 | 4.05 × 101 | 3.84 × 101 | 5.16 × 10−1 | 1.61 × 100 | 2.24 × 101 | ||
Std | 8.29 × 10−7 | 5.63 × 10−1 | 8.19 × 10−1 | 2.14 × 100 | 2.75 × 100 | 4.43 × 10−1 | 1.12 × 100 | 4.08 × 100 | ||
p-value | - | 3.82 × 10−5+ | 6.61 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.07 × 10−7+ | 3.02 × 10−11+ | ||
F7 | Median | 0.00 × 100 | 0.00 × 100 | 1.14 × 10−13 | 2.21 × 10−2 | 3.69 × 10−2 | 9.12 × 101 | 3.24 × 10−2 | 1.14 × 10−13 | |
Mean | 0.00 × 100 | 0.00 × 100 | 1.06 × 10−13 | 3.52 × 10−2 | 4.84 × 10−2 | 9.01 × 101 | 9.35 × 10−2 | 2.79 × 10−3 | ||
Std | 0.00 × 100 | 0.00 × 100 | 2.84 × 10−14 | 4.56 × 10−2 | 6.23 × 10−2 | 1.25 × 101 | 1.41 × 10−1 | 4.40 × 10−3 | ||
p-value | - | NaN= | 7.15 × 10−13+ | 1.20 × 10−12+ | 1.19 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 3.85 × 10−13+ | ||
F8 | Median | 9.95 × 10−1 | 6.47 × 100 | 1.52 × 102 | 2.27 × 102 | 2.06 × 102 | 1.49 × 101 | 0.00 × 100 | 1.68 × 102 | |
Mean | 1.16 × 100 | 6.60 × 100 | 1.32 × 102 | 2.38 × 102 | 2.13 × 102 | 1.54 × 101 | 0.00 × 100 | 1.68 × 102 | ||
Std | 8.93 × 10−1 | 1.81 × 100 | 5.09 × 101 | 6.69 × 101 | 6.08 × 101 | 3.39 × 100 | 0.00 × 100 | 3.98 × 100 | ||
p-value | - | 1.92 × 10−11+ | 3.86 × 10−11+ | 2.13 × 10−11+ | 2.13 × 10−11+ | 2.13 × 10−11+ | 4.26 × 10−9− | 2.02 × 10−11+ | ||
F9 | Median | 9.95 × 10−1 | 5.47 × 100 | 1.48 × 102 | 3.33 × 102 | 3.20 × 102 | 1.10 × 101 | 9.95 × 10−1 | 1.87 × 102 | |
Mean | 1.16 × 100 | 5.80 × 100 | 1.31 × 102 | 3.28 × 102 | 3.18 × 102 | 1.13 × 101 | 1.41 × 100 | 1.88 × 102 | ||
Std | 9.29 × 10−1 | 1.69 × 100 | 4.96 × 101 | 6.66 × 101 | 4.01 × 101 | 2.68 × 100 | 1.05 × 100 | 5.42 × 100 | ||
p-value | - | 2.85 × 10−11+ | 1.13 × 10−11+ | 2.40 × 10−11+ | 2.40 × 10−11+ | 2.40 × 10−11+ | 2.03 × 10−2+ | 2.10 × 10−11+ | ||
F10 | Median | 3.59 × 100 | 6.33 × 100 | 5.69 × 103 | 4.76 × 103 | 4.04 × 103 | 2.39 × 102 | 2.84 × 101 | 3.88 × 103 | |
Mean | 1.13 × 101 | 5.28 × 101 | 5.62 × 103 | 4.76 × 103 | 4.11 × 103 | 2.86 × 102 | 3.81 × 101 | 3.90 × 103 | ||
Std | 2.89 × 101 | 8.32 × 101 | 3.90 × 102 | 1.24 × 103 | 8.86 × 102 | 1.98 × 102 | 5.51 × 101 | 3.24 × 102 | ||
p-value | - | 2.10 × 10−3+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.09 × 10−10+ | 8.77 × 10−2= | 3.01 × 10−11+ | ||
F11 | Median | 8.36 × 100 | 1.52 × 101 | 6.55 × 103 | 4.64 × 103 | 4.69 × 103 | 2.63 × 102 | 2.26 × 102 | 4.31 × 103 | |
Mean | 2.80 × 101 | 7.94 × 101 | 6.53 × 103 | 5.04 × 103 | 4.99 × 103 | 2.58 × 102 | 2.43 × 102 | 4.31 × 103 | ||
Std | 4.53 × 101 | 1.19 × 102 | 2.54 × 102 | 1.36 × 103 | 1.07 × 103 | 1.53 × 102 | 2.10 × 102 | 2.21 × 102 | ||
p-value | - | 2.87 × 10−2+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 2.44 × 10−9+ | 8.84 × 10−7+ | 2.98 × 10−11+ | ||
F12 | Median | 2.35 × 100 | 2.46 × 100 | 2.56 × 100 | 6.89 × 10−1 | 6.67 × 10−1 | 2.47 × 100 | 2.51 × 100 | 3.34 × 10−2 | |
Mean | 2.32 × 100 | 2.49 × 100 | 2.56 × 100 | 9.21 × 10−1 | 7.84 × 10−1 | 2.39 × 100 | 2.47 × 100 | 3.68 × 10−2 | ||
Std | 2.41 × 10−1 | 2.71 × 10−1 | 1.98 × 10−1 | 8.73 × 10−1 | 4.11 × 10−1 | 3.49 × 10−1 | 2.56 × 10−1 | 2.29 × 10−2 | ||
p-value | - | 1.76 × 10−2+ | 1.89 × 10−4+ | 5.57 × 10−10− | 4.50 × 10−11− | 1.45 × 10−1= | 1.70 × 10−2+ | 3.02 × 10−11− | ||
F13 | Median | 9.34 × 10−2 | 4.40 × 10−2 | 1.85 × 10−1 | 5.86 × 10−1 | 7.04 × 10−1 | 3.24 × 100 | 4.27 × 10−2 | 3.16 × 10−1 | |
Mean | 9.35 × 10−2 | 4.39 × 10−2 | 1.84 × 10−1 | 1.85 × 100 | 2.57 × 100 | 3.20 × 100 | 4.25 × 10−2 | 3.40 × 10−1 | ||
Std | 1.50 × 10−2 | 1.08 × 10−2 | 2.68 × 10−2 | 2.53 × 100 | 2.87 × 100 | 2.03 × 10−1 | 8.97 × 10−3 | 9.18 × 10−3 | ||
p-value | - | 6.07 × 10−11− | 3.34 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.69 × 10−11- | 3.02 × 10−11+ | ||
F14 | Median | 2.59 × 10−1 | 4.10 × 10−1 | 3.10 × 10−1 | 3.18 × 10−1 | 3.27 × 10−1 | 4.63 × 101 | 3.89 × 10−1 | 3.39 × 10−1 | |
Mean | 2.62 × 10−1 | 4.06 × 10−1 | 3.11 × 10−1 | 3.36 × 10−1 | 3.42 × 10−1 | 4.68 × 101 | 3.89 × 10−1 | 3.81 × 10−1 | ||
Std | 5.24 × 10−2 | 3.87 × 10−2 | 3.61 × 10−2 | 9.64 × 10−2 | 9.18 × 10−2 | 5.15 × 100 | 3.91 × 10−2 | 1.37 × 10−1 | ||
p-value | - | 1.78 × 10−10+ | 3.01 × 10−4+ | 7.66 × 10−5+ | 9.51 × 10−6+ | 3.02 × 10−11+ | 5.07 × 10−11+ | 1.61 × 10−6+ | ||
F15 | Median | 4.16 × 100 | 4.24 × 100 | 1.30 × 101 | 9.26 × 101 | 8.31 × 101 | 3.60 × 100 | 3.46 × 100 | 3.24 × 100 | |
Mean | 4.21 × 100 | 4.26 × 100 | 1.30 × 101 | 9.75 × 101 | 8.43 × 101 | 4.69 × 100 | 4.68 × 100 | 3.40 × 100 | ||
Std | 1.43 × 100 | 1.08 × 100 | 1.04 × 100 | 3.23 × 101 | 2.67 × 101 | 3.53 × 100 | 5.52 × 100 | 9.00 × 10−1 | ||
p-value | - | 7.39 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 9.82 × 10−1= | 3.11 × 10−1= | 3.51 × 10−2− | ||
F16 | Median | 8.81 × 100 | 1.24 × 101 | 1.11 × 101 | 1.36 × 101 | 1.34 × 101 | 1.06 × 101 | 1.09 × 101 | 1.37 × 101 | |
Mean | 8.74 × 100 | 1.23 × 101 | 1.11 × 101 | 1.35 × 101 | 1.34 × 101 | 1.05 × 101 | 1.09 × 101 | 1.37 × 101 | ||
Std | 5.75 × 10−1 | 1.92 × 10−1 | 3.95 × 10−1 | 3.73 × 10−1 | 2.65 × 10−1 | 3.39 × 10−1 | 4.89 × 10−1 | 9.40 × 10−2 | ||
p-value | - | 3.02 × 10−11+ | 3.34 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 4.08 × 10−11+ | 3.34 × 10−11+ | 3.02 × 10−11+ | ||
F4–16 | w/t/l | - | 8/3/2 | 10/2/1 | 10/0/3 | 10/0/3 | 10/3/0 | 9/2/2 | 9/0/4 | |
F17 | Hybrid Problems | Median | 1.45 × 101 | 1.16 × 101 | 3.19 × 104 | 2.13 × 103 | 6.76 × 104 | 9.97 × 104 | 3.05 × 107 | 1.76 × 103 |
Mean | 2.17 × 101 | 2.00 × 101 | 3.58 × 104 | 4.10 × 107 | 2.38 × 107 | 1.36 × 105 | 2.98 × 107 | 1.77 × 103 | ||
Std | 2.98 × 101 | 2.80 × 101 | 1.97 × 104 | 7.15 × 107 | 5.06 × 107 | 1.05 × 105 | 7.53 × 106 | 4.44 × 102 | ||
p-value | - | 4.16 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F18 | Median | 4.71 × 10−1 | 1.33 × 100 | 6.85 × 101 | 1.61 × 102 | 1.56 × 102 | 2.28 × 101 | 1.38 × 102 | 8.24 × 101 | |
Mean | 8.77 × 10−1 | 1.14 × 100 | 1.13 × 102 | 9.57 × 108 | 5.05 × 108 | 2.57 × 101 | 1.79 × 102 | 8.36 × 101 | ||
Std | 6.39 × 10−1 | 7.04 × 10−1 | 9.31 × 101 | 1.82 × 109 | 1.32 × 109 | 9.48 × 100 | 1.36 × 102 | 3.01 × 101 | ||
p-value | - | 6.79 × 10−2= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F19 | Median | 2.78 × 100 | 3.66 × 100 | 4.86 × 100 | 1.56 × 101 | 1.44 × 101 | 4.28 × 101 | 2.10 × 101 | 9.97 × 100 | |
Mean | 2.78 × 100 | 3.72 × 100 | 4.89 × 100 | 6.83 × 101 | 5.28 × 101 | 4.36 × 101 | 2.42 × 101 | 9.86 × 100 | ||
Std | 5.02 × 10−1 | 4.02 × 10−1 | 4.92 × 10−1 | 1.85 × 102 | 1.33 × 102 | 7.25 × 10−1 | 1.00 × 101 | 1.52 × 100 | ||
p-value | - | 7.12 × 10−9+ | 3.34 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 2.87 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F20 | Median | 1.25 × 100 | 1.57 × 100 | 3.95 × 100 | 1.52 × 104 | 1.62 × 104 | 7.85 × 102 | 3.29 × 104 | 2.31 × 102 | |
Mean | 1.33 × 100 | 1.76 × 100 | 4.14 × 100 | 2.10 × 104 | 2.61 × 104 | 1.03 × 103 | 3.18 × 104 | 2.72 × 102 | ||
Std | 1.98 × 10−1 | 5.96 × 10−1 | 1.26 × 100 | 1.89 × 104 | 2.55 × 104 | 6.34 × 102 | 5.47 × 103 | 1.43 × 102 | ||
p-value | - | 7.70 × 10−4+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F21 | Median | 1.92 × 100 | 1.85 × 100 | 2.65 × 104 | 2.23 × 104 | 3.49 × 104 | 2.29 × 102 | 3.40 × 106 | 8.32 × 102 | |
Mean | 1.45 × 101 | 3.35 × 101 | 2.93 × 104 | 5.96 × 106 | 1.05 × 107 | 2.86 × 102 | 3.38 × 106 | 8.98 × 102 | ||
Std | 3.40 × 101 | 5.26 × 101 | 9.29 × 103 | 2.53 × 107 | 2.38 × 107 | 1.94 × 102 | 1.58 × 106 | 3.58 × 102 | ||
p-value | - | 8.88 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F22 | Median | 2.67 × 101 | 2.81 × 101 | 2.46 × 102 | 1.15 × 103 | 1.24 × 103 | 3.67 × 101 | 1.53 × 102 | 4.15 × 102 | |
Mean | 3.46 × 101 | 3.63 × 101 | 2.54 × 102 | 1.28 × 103 | 1.41 × 103 | 8.88 × 101 | 1.57 × 102 | 4.95 × 102 | ||
Std | 2.97 × 101 | 3.17 × 101 | 4.84 × 101 | 6.04 × 102 | 7.89 × 102 | 6.13 × 101 | 1.16 × 102 | 1.63 × 102 | ||
p-value | - | 2.77 × 10−5+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 6.72 × 10−10+ | 9.76 × 10−10+ | 3.02 × 10−11+ | ||
F17–22 | w/t/l | - | 3/3/0 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 | |
F23 | Composition Problems | p-value | 3.15 × 102 | 3.15 × 102 | 3.15 × 102 | 3.20 × 102 | 3.20 × 102 | 3.37 × 102 | 3.19 × 102 | 2.00 × 102 |
Mean | 3.15 × 102 | 3.15 × 102 | 3.15 × 102 | 4.20 × 102 | 4.87 × 102 | 3.38 × 102 | 3.20 × 102 | 2.00 × 102 | ||
Std | 5.68 × 10−14 | 5.68 × 10−14 | 5.68 × 10−14 | 2.59 × 102 | 2.96 × 102 | 3.78 × 100 | 1.92 × 100 | 0.00 × 100 | ||
p-value | - | NaN= | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.69 × 10−14− | ||
F24 | Median | 2.00 × 102 | 2.00 × 102 | 2.23 × 102 | 2.63 × 102 | 2.56 × 102 | 2.27 × 102 | 2.30 × 102 | 2.00 × 102 | |
Mean | 2.04 × 102 | 2.00 × 102 | 2.23 × 102 | 2.80 × 102 | 2.65 × 102 | 2.27 × 102 | 2.30 × 102 | 2.00 × 102 | ||
Std | 8.66 × 100 | 0.00 × 100 | 7.69 × 10−1 | 5.55 × 101 | 3.19 × 101 | 1.50 × 100 | 2.92 × 100 | 1.31 × 10−4 | ||
p-value | - | 1.10 × 10−2− | 9.93 × 10−12+ | 6.48 × 10−12+ | 6.48 × 10−12+ | 6.48 × 10−12+ | 6.48 × 10−12+ | 2.03 × 10−1= | ||
F25 | Median | 2.03 × 102 | 2.03 × 102 | 2.00 × 102 | 3.06 × 102 | 2.82 × 102 | 2.07 × 102 | 2.06 × 102 | 2.00 × 102 | |
Mean | 2.03 × 102 | 2.03 × 102 | 2.00 × 102 | 2.97 × 102 | 2.78 × 102 | 2.07 × 102 | 2.06 × 102 | 2.00 × 102 | ||
Std | 1.33 × 102 | 2.63 × 10−2 | 0.00 × 100 | 4.49 × 102 | 2.76 × 101 | 3.90 × 10−1 | 1.24 × 100 | 0.00 × 100 | ||
p-value | - | 8.27 × 10−1= | 5.91 × 10−13− | 1.74 × 10−11+ | 1.74 × 10−11+ | 1.74 × 10−11+ | 1.74 × 10−11+ | 5.91 × 10−13− | ||
F26 | Median | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.01 × 102 | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 2.00 × 102 | |
Mean | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.05 × 102 | 1.04 × 102 | 1.01 × 102 | 1.01 × 102 | 2.00 × 102 | ||
Std | 1.84 × 10−2 | 1.25 × 10−2 | 1.06 × 102 | 2.38 × 102 | 1.82 × 102 | 1.05 × 100 | 9.10 × 10−1 | 0.00 × 100 | ||
p-value | - | 2.37 × 10−1− | 3.34 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F27 | Median | 3.00 × 102 | 3.41 × 102 | 3.00 × 102 | 1.58 × 103 | 1.46 × 103 | 4.24 × 102 | 3.00 × 102 | 2.00 × 102 | |
Mean | 3.00 × 102 | 3.38 × 102 | 3.00 × 102 | 1.49 × 103 | 1.21 × 103 | 4.14 × 102 | 3.17 × 102 | 2.00 × 102 | ||
Std | 0.00 × 100 | 4.02 × 101 | 0.00 × 100 | 2.92 × 102 | 4.53 × 102 | 3.09 × 102 | 2.56 × 102 | 0.00 × 100 | ||
p-value | - | 2.20 × 10−6+ | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.69 × 10−14− | ||
F28 | Median | 8.41 × 102 | 8.19 × 102 | 8.16 × 102 | 5.49 × 103 | 4.98 × 103 | 7.10 × 102 | 4.78 × 102 | 2.00 × 102 | |
Mean | 8.40 × 102 | 8.21 × 102 | 8.22 × 102 | 5.56 × 103 | 5.11 × 103 | 7.03 × 102 | 4.76 × 102 | 2.00 × 102 | ||
Std | 2.05 × 101 | 4.03 × 101 | 2.02 × 101 | 1.59 × 103 | 1.06 × 103 | 6.79 × 101 | 5.60 × 100 | 0.00 × 100 | ||
p-value | - | 2.15 × 10−2− | 3.34 × 10−3− | 3.01 × 10−11+ | 3.01 × 10−11+ | 7.09 × 10−9− | 3.01 × 10−11− | 1.20 × 10−12− | ||
F29 | Median | 7.21 × 102 | 7.15 × 102 | 1.24 × 103 | 4.17 × 108 | 4.37 × 108 | 1.00 × 103 | 5.88 × 102 | 2.00 × 102 | |
Mean | 7.28 × 102 | 1.40 × 106 | 1.28 × 103 | 4.14 × 108 | 4.40 × 108 | 1.04 × 103 | 8.95 × 102 | 2.00 × 102 | ||
Std | 2.71 × 101 | 3.59 × 106 | 1.39 × 102 | 1.18 × 108 | 1.53 × 108 | 1.60 × 102 | 8.34 × 102 | 0.00 × 100 | ||
p-value | - | 1.56 × 10−2+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.34 × 10−11+ | 6.57 × 10−2= | 1.21 × 10−12− | ||
F30 | Median | 1.35 × 103 | 8.73 × 102 | 2.13 × 103 | 3.40 × 106 | 3.33 × 106 | 9.55 × 102 | 4.69 × 102 | 2.00 × 102 | |
Mean | 1.57 × 103 | 1.00 × 103 | 2.03 × 103 | 3.60 × 106 | 3.41 × 106 | 1.02 × 103 | 4.82 × 102 | 2.00 × 102 | ||
Std | 5.78 × 102 | 4.70 × 102 | 5.37 × 102 | 1.45 × 106 | 1.62 × 106 | 2.69 × 102 | 2.16 × 102 | 0.00 × 100 | ||
p-value | - | 1.43 × 10−5− | 5.56 × 10−4+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 5.46 × 10−6− | 3.02 × 10−11− | 1.21 × 10−12− | ||
F23–30 | w/t/l | - | 2/2/4 | 4/2/2 | 8/0/0 | 8/0/0 | 6/0/2 | 5/1/2 | 1/1/6 | |
w/t/l | - | 13/11/6 | 23/4/3 | 27/0/3 | 27/0/3 | 25/3/2 | 23/3/4 | 19/1/10 | ||
Rank | 2.25 | 2.97 | 4.77 | 6.43 | 6.10 | 5.03 | 4.83 | 3.62 |
F | Category | Quality | ACSEDA | EDA2 | EDAVERS | EDA/LS | EDA/LS-MS | TRA-EDA | BUMDA | MA-ES |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Unimodal Problems | Median | 1.42 × 10−14 | 7.11 × 10−14 | 4.09 × 105 | 6.84 × 10−9 | 1.28 × 10−8 | 3.42 × 108 | 1.61 × 107 | 1.42 × 10−14 |
Mean | 1.14 × 10−14 | 7.06 × 10−14 | 4.13 × 105 | 6.41 × 102 | 9.33 × 107 | 3.50 × 108 | 1.63 × 107 | 1.80 × 10−14 | ||
Std | 6.77 × 10−15 | 1.00 × 10−14 | 7.25 × 104 | 2.32 × 103 | 5.02 × 108 | 5.08 × 107 | 3.06 × 106 | 6.28 × 10−15 | ||
p-value | - | 5.50 × 10−12+ | 9.04 × 10−12+ | 9.04 × 10−12+ | 9.04 × 10−12+ | 9.04 × 10−12+ | 9.04 × 10−12+ | 5.37 × 10−4+ | ||
F2 | Median | 5.97 × 10−13 | 1.23 × 10−11 | 3.30 × 103 | 1.77 × 10−11 | 3.67 × 10−11 | 3.27 × 1010 | 3.27 × 103 | 2.84 × 10−14 | |
Mean | 7.40 × 10−13 | 1.23 × 10−11 | 3.49 × 103 | 7.56 × 10−10 | 1.59 × 10−9 | 3.32 × 1010 | 1.56 × 104 | 3.60 × 10−14 | ||
Std | 3.83 × 10−13 | 1.92 × 10−12 | 1.76 × 103 | 2.98 × 10−9 | 3.81 × 10−9 | 1.79 × 109 | 2.60 × 104 | 1.26 × 10−14 | ||
p-value | - | 2.98 × 10−12+ | 2.98 × 10−12+ | 8.43 × 10−7+ | 1.48 × 10−6+ | 2.98 × 10−11+ | 2.98 × 10−11+ | 8.74 × 10−12− | ||
F3 | Median | 0.00 × 100 | 0.00 × 100 | 4.85 × 103 | 1.10 × 10−8 | 1.11 × 10−8 | 2.93 × 104 | 1.25 × 104 | 1.14 × 10−13 | |
Mean | 0.00 × 100 | 0.00 × 100 | 5.10 × 103 | 1.74 × 101 | 4.35 × 10−5 | 2.87 × 104 | 1.35 × 104 | 1.00 × 10−13 | ||
Std | 0.00 × 100 | 0.00 × 100 | 1.03 × 103 | 9.36 × 101 | 1.72 × 10−4 | 2.52 × 103 | 5.05 × 103 | 2.40 × 10−14 | ||
p-value | - | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.97 × 10−13+ | ||
F1–3 | w/t/l | - | 2/1/0 | 3/0/0 | 3/0/0 | 3/0/0 | 3/0/0 | 3/0/0 | 2/0/1 | |
F4 | Simple Multimodal Problems | Median | 9.81 × 101 | 5.35 × 100 | 8.16 × 101 | 5.71 × 10−9 | 1.29 × 10−8 | 4.47 × 103 | 1.25 × 102 | 1.14 × 10−13 |
Mean | 9.25 × 101 | 3.93 × 101 | 7.80 × 101 | 1.04 × 103 | 3.86 × 103 | 4.46 × 103 | 1.28 × 102 | 3.99 × 10−1 | ||
Std | 7.64 × 100 | 4.51 × 101 | 2.13 × 101 | 5.11 × 103 | 1.27 × 104 | 4.24 × 102 | 1.57 × 101 | 1.20 × 100 | ||
p-value | - | 1.93 × 10−3− | 4.80 × 10−4− | 5.29 × 10−9+ | 7.12 × 10−8+ | 1.62 × 10−11+ | 1.10 × 10−10+ | 8.76 × 10−12− | ||
F5 | Median | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.00 × 101 | 2.00 × 101 | 2.11 × 101 | 2.11 × 101 | 2.00 × 101 | |
Mean | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.00 × 101 | 2.00 × 101 | 2.11 × 101 | 2.11 × 101 | 2.05 × 101 | ||
Std | 4.14 × 10−2 | 2.54 × 10−2 | 3.32 × 10−2 | 0.00 × 100 | 2.21 × 10−2 | 4.83 × 10−2 | 3.07 × 10−2 | 7.59 × 10−1 | ||
p-value | - | 8.30 × 10−1= | 2.51 × 10−2− | 1.21 × 10−12− | 4.10 × 10−12− | 1.45 × 10−1= | 1.19 × 10−1= | 1.95 × 10−3− | ||
F6 | Median | 5.22 × 10−5 | 1.39 × 10−4 | 5.51 × 10−1 | 7.19 × 101 | 6.91 × 101 | 6.96 × 100 | 3.64 × 10−1 | 4.21 × 101 | |
Mean | 1.74 × 10−2 | 2.52 × 10−1 | 8.59 × 10−1 | 7.17 × 101 | 6.93 × 101 | 7.18 × 100 | 9.50 × 10−1 | 4.15 × 101 | ||
Std | 9.31 × 10−2 | 5.81 × 10−1 | 9.72 × 10−1 | 3.34 × 100 | 3.41 × 100 | 2.00 × 100 | 1.23 × 100 | 6.17 × 100 | ||
p-value | - | 3.16 × 10−10+ | 1.09 × 10−10+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.41 × 10−9+ | 3.02 × 10−11+ | ||
F7 | Median | 0.00 × 100 | 0.00 × 100 | 3.41 × 10−13 | 1.72 × 10−2 | 1.97 × 10−2 | 2.98 × 102 | 5.73 × 10−3 | 2.27 × 10−13 | |
Mean | 0.00 × 100 | 0.00 × 100 | 9.86 × 10−4 | 2.39 × 10−2 | 2.18 × 10−2 | 2.99 × 102 | 2.20 × 10−2 | 2.47 × 10−4 | ||
Std | 0.00 × 100 | 0.00 × 100 | 2.96 × 10−3 | 2.69 × 10−2 | 2.33 × 10−2 | 1.73 × 101 | 4.80 × 10−2 | 1.33 × 10−3 | ||
p-value | - | NaN= | 6.50 × 10−13+ | 1.20 × 10−12+ | 1.20 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 5.02 × 10−13+ | ||
F8 | Median | 2.98 × 100 | 7.96 × 100 | 3.09 × 102 | 4.69 × 102 | 4.35 × 102 | 4.93 × 101 | 0.00 × 100 | 3.10 × 102 | |
Mean | 2.98 × 100 | 7.89 × 100 | 2.96 × 102 | 4.83 × 102 | 4.57 × 102 | 4.82 × 101 | 3.32 × 10−2 | 3.10 × 102 | ||
Std | 1.23 × 100 | 2.56 × 100 | 5.42 × 101 | 1.07 × 102 | 9.68 × 101 | 6.28 × 100 | 1.79 × 10−1 | 5.00 × 100 | ||
p-value | - | 7.55 × 10−10+ | 2.51 × 10−11+ | 2.51 × 10−11+ | 2.51 × 10−11+ | 2.51 × 10−11+ | 1.69 × 10−12− | 2.47 × 10−11+ | ||
F9 | Median | 2.49 × 100 | 6.96 × 100 | 3.11 × 102 | 7.00 × 102 | 6.23 × 102 | 3.80 × 101 | 1.99 × 100 | 4.37 × 102 | |
Mean | 2.49 × 100 | 6.96 × 100 | 2.82 × 102 | 6.95 × 102 | 6.54 × 102 | 3.75 × 101 | 2.14 × 100 | 4.35 × 102 | ||
Std | 1.35 × 100 | 1.87 × 100 | 8.86 × 101 | 1.20 × 102 | 9.46 × 101 | 4.75 × 100 | 2.74 × 100 | 9.41 × 100 | ||
p-value | - | 1.59 × 10−10+ | 2.61 × 10−11+ | 2.61 × 10−11+ | 2.61 × 10−11+ | 2.61 × 10−11+ | 2.95 × 10−1= | 2.59 × 10−11+ | ||
F10 | Median | 8.44 × 100 | 1.30 × 102 | 1.18 × 104 | 7.57 × 103 | 7.42 × 103 | 1.06 × 103 | 5.79 × 101 | 7.87 × 103 | |
Mean | 1.07 × 102 | 1.99 × 102 | 1.18 × 104 | 8.30 × 103 | 8.24 × 103 | 1.04 × 103 | 6.25 × 101 | 7.84 × 103 | ||
Std | 1.65 × 102 | 1.80 × 102 | 4.28 × 102 | 2.40 × 103 | 2.07 × 103 | 4.09 × 102 | 4.11 × 101 | 3.26 × 102 | ||
p-value | - | 5.44 × 10−3+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 9.91 × 10−11+ | 6.95 × 10−1= | 3.02 × 10−11+ | ||
F11 | Median | 1.36 × 102 | 1.42 × 102 | 1.25 × 104 | 8.39 × 103 | 8.52 × 103 | 2.57 × 103 | 4.52 × 102 | 8.44 × 103 | |
Mean | 1.18 × 102 | 1.63 × 102 | 1.25 × 104 | 9.46 × 103 | 9.43 × 103 | 2.52 × 103 | 4.58 × 102 | 8.47 × 103 | ||
Std | 9.29 × 100 | 1.65 × 102 | 3.67 × 102 | 2.78 × 103 | 3.02 × 103 | 9.47 × 102 | 2.82 × 102 | 2.77 × 102 | ||
p-value | - | 2.84 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.65 × 10−11+ | 3.02 × 10−11+ | ||
F12 | Median | 3.35 × 100 | 3.30 × 100 | 3.20 × 100 | 7.43 × 10−1 | 6.52 × 10−1 | 3.27 × 100 | 3.38 × 100 | 2.85 × 10−2 | |
Mean | 3.35 × 100 | 3.27 × 100 | 3.25 × 100 | 8.15 × 10−1 | 6.83 × 10−1 | 3.26 × 100 | 3.35 × 100 | 3.26 × 10−2 | ||
Std | 2.52 × 10−1 | 2.71 × 10−1 | 3.05 × 10−1 | 3.04 × 10−1 | 2.57 × 10−1 | 2.56 × 10−1 | 1.99 × 10−1 | 1.70 × 10−2 | ||
p-value | - | 2.84 × 10−1= | 1.96 × 10−1= | 3.02 × 10−1− | 3.02 × 10−11− | 2.17 × 10−1= | 8.77 × 10−1= | 3.02 × 10−11− | ||
F13 | Median | 1.40 × 10−1 | 7.28 × 10−2 | 2.46 × 10−1 | 4.98 × 10−1 | 4.50 × 10−1 | 3.71 × 100 | 6.67 × 10−2 | 3.63 × 10−1 | |
Mean | 1.40 × 10−1 | 7.48 × 10−2 | 2.44 × 10−1 | 1.24 × 100 | 4.97 × 10−1 | 3.72 × 100 | 6.38 × 10−2 | 3.63 × 10−1 | ||
Std | 1.89 × 10−2 | 1.03 × 10−2 | 2.22 × 10−2 | 2.15 × 100 | 1.24 × 10−1 | 1.31 × 10−1 | 1.03 × 10−2 | 6.78 × 10−2 | ||
p-value | - | 3.02 × 10−11− | 4.08 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11− | 3.02 × 10−11+ | ||
F14 | Median | 2.57 × 10−1 | 4.01 × 10−1 | 3.73 × 10−1 | 3.82 × 10−1 | 3.97 × 10−1 | 6.42 × 101 | 4.36 × 10−1 | 3.37 × 10−1 | |
Mean | 2.40 × 10−1 | 3.93 × 10−1 | 3.76 × 10−1 | 4.58 × 10−1 | 4.95 × 10−1 | 6.40 × 101 | 4.27 × 10−1 | 4.23 × 10−1 | ||
Std | 6.75 × 10−2 | 4.80 × 10−2 | 2.87 × 10−2 | 1.86 × 10−1 | 1.86 × 10−1 | 3.95 × 100 | 3.49 × 10−2 | 2.25 × 10−1 | ||
p-value | - | 5.07 × 10−10+ | 1.61 × 10−10+ | 2.87 × 10−10+ | 3.16 × 10−10+ | 3.02 × 10−11+ | 4.08 × 10−11+ | 1.87 × 10−7+ | ||
F15 | Median | 4.87 × 100 | 1.23 × 101 | 2.74 × 101 | 1.84 × 102 | 1.73 × 102 | 2.39 × 103 | 5.30 × 100 | 6.61 × 100 | |
Mean | 4.81 × 100 | 1.19 × 101 | 2.64 × 101 | 1.84 × 102 | 1.82 × 102 | 2.45 × 102 | 5.27 × 100 | 6.61 × 100 | ||
Std | 4.93 × 10−1 | 1.79 × 100 | 4.02 × 100 | 4.72 × 101 | 5.73 × 101 | 9.48 × 102 | 6.27 × 10−1 | 1.37 × 100 | ||
p-value | - | 3.02 × 10−11+ | 3.34 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 2.38 × 10−3+ | 7.69 × 10−8+ | ||
F16 | Median | 1.80 × 101 | 2.18 × 101 | 2.07 × 101 | 2.28 × 101 | 2.25 × 101 | 2.01 × 101 | 1.98 × 101 | 2.24 × 101 | |
Mean | 1.80 × 101 | 2.18 × 101 | 2.07 × 101 | 2.28 × 101 | 2.26 × 101 | 2.00 × 101 | 1.97 × 101 | 2.24 × 101 | ||
Std | 6.67 × 10−1 | 2.58 × 10−1 | 3.75 × 10−1 | 5.14 × 10−1 | 4.27 × 10−1 | 2.92 × 10−1 | 4.87 × 10−1 | 1.40 × 10−1 | ||
p-value | - | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.09 × 10−10+ | 3.02 × 10−11+ | ||
F4–16 | w/t/l | - | 7/4/2 | 11/1/1 | 11/0/2 | 11/0/2 | 11/2/0 | 07/4/2 | 10/0/3 | |
F17 | Hybrid Problems | Median | 7.79 × 101 | 3.16 × 101 | 3.45 × 104 | 5.74 × 107 | 1.49 × 104 | 1.96 × 107 | 1.69 × 107 | 2.45 × 103 |
Mean | 1.16 × 102 | 3.77 × 101 | 3.62 × 104 | 3.42 × 108 | 1.04 × 108 | 2.02 × 107 | 1.76 × 107 | 2.49 × 103 | ||
Std | 7.34 × 101 | 2.47 × 101 | 1.57 × 104 | 4.09 × 108 | 1.77 × 108 | 4.76 × 106 | 3.45 × 106 | 5.06 × 102 | ||
p-value | - | 1.10 × 10−11− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F18 | Median | 7.84 × 100 | 1.40 × 100 | 1.58 × 102 | 2.88 × 102 | 2.98 × 102 | 5.85 × 108 | 1.02 × 103 | 1.66 × 102 | |
Mean | 8.47 × 100 | 1.35 × 100 | 2.13 × 102 | 3.49 × 109 | 1.34 × 109 | 6.42 × 108 | 1.08 × 103 | 1.65 × 102 | ||
Std | 3.23 × 100 | 6.37 × 10−1 | 1.59 × 102 | 7.03 × 109 | 3.62 × 109 | 1.93 × 108 | 5.06 × 102 | 4.18 × 101 | ||
p-value | - | 3.02 × 10−11− | 4.98 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F19 | Median | 1.09 × 101 | 7.36 × 100 | 3.50 × 101 | 2.53 × 101 | 2.55 × 101 | 5.99 × 101 | 6.30 × 101 | 1.85 × 101 | |
Mean | 1.08 × 101 | 7.46 × 100 | 3.48 × 101 | 2.59 × 101 | 9.34 × 101 | 5.81 × 101 | 6.07 × 101 | 1.84 × 101 | ||
Std | 7.71 × 10−1 | 7.65 × 10−1 | 4.99 × 100 | 2.77 × 100 | 3.64 × 102 | 9.80 × 100 | 9.75 × 100 | 2.52 × 100 | ||
p-value | - | 4.50 × 10−11− | 4.50 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 4.08 × 10−11+ | ||
F20 | Median | 1.96 × 100 | 2.52 × 100 | 2.33 × 103 | 6.41 × 104 | 8.45 × 104 | 5.01 × 102 | 3.41 × 104 | 3.01 × 102 | |
Mean | 1.95 × 100 | 2.50 × 100 | 2.37 × 103 | 9.01 × 104 | 7.81 × 104 | 5.08 × 102 | 3.35 × 104 | 3.27 × 102 | ||
Std | 2.27 × 10−1 | 3.48 × 10−1 | 7.57 × 102 | 1.47 × 105 | 4.91 × 104 | 2.60 × 102 | 6.10 × 103 | 1.35 × 102 | ||
p-value | - | 1.16 × 10−7+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F21 | Median | 2.47 × 102 | 1.23 × 102 | 7.13 × 104 | 2.35 × 107 | 1.23 × 106 | 1.64 × 103 | 8.45 × 106 | 1.75 × 103 | |
Mean | 1.99 × 102 | 9.74 × 101 | 7.27 × 104 | 8.60 × 107 | 1.83 × 107 | 1.98 × 103 | 8.53 × 106 | 1.76 × 103 | ||
Std | 8.11 × 101 | 7.43 × 101 | 1.94 × 104 | 1.08 × 108 | 3.03 × 107 | 1.49 × 103 | 2.01 × 106 | 4.26 × 102 | ||
p-value | - | 8.15 × 10−5− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.34 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F22 | Median | 2.72 × 101 | 3.02 × 101 | 9.51 × 102 | 1.89 × 103 | 2.11 × 103 | 9.87 × 101 | 4.69 × 101 | 7.94 × 102 | |
Mean | 3.54 × 101 | 3.02 × 101 | 9.06 × 102 | 9.23 × 103 | 3.33 × 103 | 1.18 × 102 | 1.37 × 102 | 7.58 × 102 | ||
Std | 3.02 × 101 | 6.70 × 10−1 | 1.90 × 102 | 2.74 × 104 | 5.36 × 103 | 6.15 × 101 | 1.46 × 102 | 2.84 × 102 | ||
p-value | - | 1.36 × 10−7− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 2.23 × 10−9+ | 1.17 × 10−9+ | 3.02 × 10−11+ | ||
F17–22 | w/t/l | - | 1/0/5 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 | |
F23 | Composition Problems | Median | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 2.48 × 103 | 1.70 × 103 | 4.17 × 102 | 3.66 × 102 | 2.00 × 102 |
Mean | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 2.20 × 103 | 1.52 × 103 | 4.21 × 102 | 3.66 × 102 | 2.00 × 102 | ||
Std | 1.71 × 10−13 | 1.71 × 10−13 | 1.71 × 10−13 | 9.29 × 102 | 6.07 × 102 | 1.44 × 101 | 2.74 × 100 | 0.00 × 100 | ||
p-value | - | NaN= | NaN= | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.69 × 10−14− | ||
F24 | Median | 2.68 × 102 | 2.68 × 102 | 2.67 × 102 | 4.09 × 102 | 3.60 × 102 | 2.72 × 102 | 2.78 × 102 | 2.00 × 102 | |
Mean | 2.68 × 102 | 2.68 × 102 | 2.64 × 102 | 4.78 × 102 | 4.44 × 102 | 2.72 × 102 | 2.78 × 102 | 2.00 × 102 | ||
Std | 1.33 × 100 | 1.10 × 100 | 5.66 × 100 | 1.69 × 102 | 1.40 × 102 | 8.52 × 10−1 | 1.11 × 100 | 0.00 × 100 | ||
p-value | - | 9.17 × 10−1= | 3.00 × 10−1= | 2.88 × 10−11+ | 2.88 × 10−11+ | 5.25 × 10−11+ | 2.88 × 10−11+ | 1.14 × 10−12− | ||
F25 | Median | 2.05 × 102 | 2.05 × 102 | 2.00 × 102 | 5.77 × 102 | 4.32 × 102 | 2.17 × 102 | 2.14 × 102 | 2.00 × 102 | |
Mean | 2.05 × 102 | 2.05 × 102 | 2.00 × 102 | 5.57 × 102 | 4.29 × 102 | 2.17 × 102 | 2.15 × 102 | 2.00 × 102 | ||
Std | 1.49 × 10−1 | 1.58 × 10−1 | 0.00 × 100 | 8.87 × 101 | 5.87 × 101 | 1.56 × 100 | 5.84 × 100 | 0.00 × 100 | ||
p-value | - | 4.12 × 10−1= | 1.19 × 10−12− | 2.98 × 10−11+ | 2.98 × 10−11+ | 2.98 × 10−11+ | 2.98 × 10−11+ | 1.19 × 10−12− | ||
F26 | Median | 1.00 × 102 | 1.00 × 102 | 2.00 × 102 | 1.01 × 102 | 1.01 × 102 | 1.06 × 102 | 1.74 × 102 | 2.00 × 102 | |
Mean | 1.00 × 102 | 1.00 × 102 | 1.96 × 102 | 2.90 × 102 | 1.72 × 102 | 1.06 × 102 | 1.58 × 102 | 2.00 × 102 | ||
Std | 4.78 × 10−2 | 1.35 × 10−2 | 1.64 × 101 | 2.27 × 102 | 1.18 × 102 | 1.35 × 100 | 4.00 × 101 | 0.00 × 100 | ||
p-value | - | 8.98 × 10−11− | 2.80 × 10−11+ | 6.06 × 10−11+ | 1.09 × 10−10+ | 2.98 × 10−11+ | 2.98 × 10−11+ | 1.21 × 10−11+ | ||
F27 | Median | 3.00 × 102 | 4.19 × 102 | 3.52 × 102 | 2.68 × 103 | 2.51 × 103 | 7.00 × 102 | 3.68 × 102 | 2.00 × 102 | |
Mean | 3.17 × 102 | 4.23 × 102 | 3.48 × 102 | 2.67 × 103 | 2.49 × 103 | 7.00 × 102 | 3.74 × 102 | 2.00 × 102 | ||
Std | 2.20 × 101 | 4.98 × 101 | 4.35 × 101 | 1.79 × 102 | 1.16 × 102 | 5.13 × 101 | 2.72 × 101 | 0.00 × 100 | ||
p-value | - | 5.37 × 10−11+ | 5.79 × 10−6+ | 2.95 × 10−11+ | 2.95 × 10−11+ | 2.95 × 10−11+ | 4.11 × 10−9+ | 1.18 × 10−12− | ||
F28 | Median | 1.16 × 103 | 1.16 × 103 | 1.15 × 103 | 1.15 × 104 | 1.02 × 104 | 1.92 × 103 | 4.29 × 102 | 2.00 × 102 | |
Mean | 1.16 × 103 | 1.19 × 103 | 1.15 × 103 | 1.15 × 104 | 9.91 × 103 | 2.01 × 103 | 4.31 × 102 | 2.00 × 102 | ||
Std | 4.37 × 101 | 1.68 × 102 | 3.88 × 101 | 2.14 × 103 | 2.17 × 103 | 4.59 × 102 | 6.89 × 100 | 0.00 × 100 | ||
p-value | - | 9.35 × 10−1= | 1.81 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.33 × 10−11+ | 3.02 × 10−11+ | 1.21 × 10−12− | ||
F29 | Median | 8.14 × 102 | 7.39 × 102 | 1.66 × 103 | 1.57 × 109 | 1.05 × 109 | 1.23 × 103 | 7.29 × 102 | 2.00 × 102 | |
Mean | 8.34 × 102 | 4.24 × 106 | 1.67 × 103 | 1.57 × 109 | 1.06 × 109 | 2.65 × 103 | 9.82 × 102 | 2.00 × 102 | ||
Std | 5.15 × 101 | 1.63 × 107 | 1.50 × 102 | 3.30 × 108 | 2.06 × 108 | 2.81 × 103 | 7.50 × 102 | 0.00 × 100 | ||
p-value | - | 6.77 × 10−5+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 9.92 × 10−11+ | 1.33 × 10−1= | 1.21 × 10−12− | ||
F30 | Median | 8.56 × 103 | 9.37 × 103 | 9.02 × 103 | 2.49 × 107 | 1.83 × 107 | 1.74 × 105 | 8.19 × 102 | 2.00 × 102 | |
Mean | 8.57 × 103 | 9.50 × 103 | 9.20 × 103 | 2.66 × 107 | 1.92 × 107 | 1.67 × 105 | 8.17 × 102 | 2.00 × 102 | ||
Std | 3.37 × 102 | 7.30 × 102 | 3.67 × 102 | 1.14 × 107 | 6.42 × 106 | 2.95 × 104 | 1.82 × 102 | 0.00 × 100 | ||
p-value | - | 1.07 × 10−7+ | 7.77 × 10−9+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.21 × 10−12− | ||
F23–30 | w/t/l | - | 3/4/1 | 4/3/1 | 8/0/0 | 8/0/0 | 8/0/0 | 5/1/2 | 1/0/7 | |
w/t/l | - | 13/9/8 | 24/4/2 | 28/0/2 | 28/0/2 | 28/2/0 | 21/5/4 | 19/0/11 | ||
Rank | 2.33 | 2.93 | 4.52 | 6.80 | 6.27 | 5.70 | 4.30 | 3.15 |
F | Category | Quality | ACSEDA | EDA2 | EDAVERS | EDA/LS | EDA/LS-MS | TRA-EDA | BUMDA | MA-ES |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Unimodal Problems | Median | 1.80 × 10−9 | 6.82 × 10−13 | 1.25 × 106 | 1.87 × 106 | 1.39 × 103 | 4.74 × 108 | 8.33 × 107 | 4.26 × 10−14 |
Mean | 1.90 × 10−9 | 7.24 × 10−13 | 1.22 × 106 | 8.24 × 109 | 4.41 × 108 | 4.62 × 108 | 8.48 × 107 | 1.46 × 10−13 | ||
Std | 7.43 × 10−9 | 1.70 × 10−13 | 1.68 × 105 | 8.95 × 109 | 1.03 × 109 | 6.07 × 107 | 8.05 × 106 | 5.46 × 10−13 | ||
p-value | - | 2.99 × 10−11− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.20 × 10−11− | ||
F2 | Median | 3.84 × 10−7 | 9.36 × 10−11 | 9.84 × 103 | 1.88 × 10−10 | 1.14 × 10−10 | 9.69 × 1010 | 4.27 × 104 | 8.53 × 10−14 | |
Mean | 3.94 × 10−7 | 9.67 × 10−11 | 1.12 × 104 | 1.54 × 10−9 | 3.87 × 101 | 9.74 × 1010 | 7.15 × 104 | 7.48 × 10−14 | ||
Std | 2.02 × 10−7 | 2.78 × 10−11 | 5.42 × 103 | 3.04 × 10−9 | 2.08 × 102 | 3.46 × 109 | 9.73 × 104 | 1.55 × 10−14 | ||
p-value | - | 3.02 × 10−11− | 3.02 × 10−11+ | 3.02 × 10−11+ | 5.57 × 10−10+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.48 × 10−11− | ||
F3 | Median | 5.40 × 10−13 | 0.00 × 100 | 6.11 × 103 | 2.13 × 10−8 | 2.57 × 10−8 | 1.11 × 105 | 2.39 × 104 | 1.71 × 10−13 | |
Mean | 7.09 × 10−13 | 0.00 × 100 | 6.25 × 103 | 9.02 × 10−1 | 4.18 × 102 | 1.10 × 105 | 2.34 × 104 | 2.01 × 10−13 | ||
Std | 4.71 × 10−13 | 0.00 × 100 | 1.48 × 103 | 4.31 × 100 | 1.13 × 103 | 5.11 × 103 | 3.80 × 103 | 4.08 × 10−14 | ||
p-value | - | 1.18 × 10−12− | 2.96 × 10−11+ | 2.96 × 10−11+ | 2.96 × 10−11+ | 2.96 × 10−11+ | 2.96 × 10−11+ | 4.68 × 10−9− | ||
F1–3 | w/t/l | - | 0/0/3 | 3/0/0 | 2/0/1 | 3/0/0 | 3/0/0 | 3/0/0 | 0/0/3 | |
F4 | Simple Multimodal Problems | Median | 1.85 × 102 | 2.01 × 102 | 1.43 × 102 | 3.99 × 100 | 1.37 × 10−7 | 1.27 × 104 | 1.91 × 102 | 1.71 × 10−13 |
Mean | 1.81 × 102 | 1.92 × 102 | 1.40 × 102 | 1.04 × 104 | 4.09 × 103 | 1.27 × 104 | 1.82 × 102 | 1.20 × 100 | ||
Std | 2.93 × 101 | 2.69 × 101 | 7.29 × 100 | 3.91 × 104 | 1.31 × 104 | 7.87 × 102 | 2.44 × 101 | 1.83 × 100 | ||
p-value | - | 3.76 × 10−1= | 1.83 × 10−9− | 3.51 × 10−9+ | 1.45 × 10−7+ | 2.61 × 10−11+ | 9.70 × 10−1= | 1.14 × 10−11− | ||
F5 | Median | 2.13 × 101 | 2.13 × 101 | 2.13 × 101 | 2.00 × 101 | 2.00 × 101 | 2.13 × 101 | 2.13 × 101 | 2.00 × 101 | |
Mean | 2.13 × 101 | 2.13 × 101 | 2.13 × 101 | 2.00 × 101 | 2.00 × 101 | 2.13 × 101 | 2.13 × 101 | 2.03 × 101 | ||
Std | 2.74 × 10−2 | 2.56 × 10−2 | 2.46 × 10−2 | 1.47 × 10−2 | 0.00 × 100 | 2.28 × 10−2 | 3.62 × 10−2 | 6.25 × 10−1 | ||
p-value | - | 1.70 × 10−2− | 1.86 × 10−1= | 3.16 × 10−12− | 1.21 × 10−12− | 1.69 × 10−1= | 5.44 × 10−1= | 9.19 × 10−6− | ||
F6 | Median | 4.10 × 10−3 | 1.94 × 100 | 1.01 × 101 | 1.55 × 102 | 6.88 × 101 | 3.37 × 101 | 4.93 × 100 | 1.19 × 102 | |
Mean | 3.83 × 10−1 | 2.43 × 100 | 1.06 × 101 | 1.56 × 102 | 6.96 × 101 | 3.39 × 101 | 5.05 × 100 | 1.20 × 102 | ||
Std | 5.70 × 10−1 | 1.85 × 100 | 3.51 × 100 | 5.33 × 100 | 2.75 × 100 | 3.54 × 100 | 1.58 × 100 | 7.18 × 100 | ||
p-value | - | 9.51 × 10−6+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.34 × 10−11+ | 3.02 × 10−11+ | ||
F7 | Median | 2.27 × 10−13 | 0.00 × 100 | 1.02 × 10−12 | 1.90 × 10−8 | 1.72 × 10−2 | 1.10 × 103 | 5.50 × 10−2 | 3.41 × 10−13 | |
Mean | 2.31 × 10−13 | 0.00 × 100 | 1.00 × 10−12 | 9.27 × 10−3 | 2.65 × 10−2 | 1.10 × 103 | 7.16 × 10−2 | 4.93 × 10−4 | ||
Std | 1.19 × 10−13 | 0.00 × 100 | 1.84 × 10−13 | 2.21 × 10−2 | 2.82 × 10−2 | 3.23 × 101 | 5.06 × 10−2 | 1.84 × 10−3 | ||
p-value | - | 8.27 × 10−13− | 1.98 × 10−11+ | 2.22 × 10−11+ | 2.25 × 10−11+ | 2.25 × 10−11+ | 2.25 × 10−11+ | 4.97 × 10−6+ | ||
F8 | Median | 9.45 × 100 | 2.39 × 101 | 7.33 × 102 | 1.56 × 103 | 4.64 × 102 | 2.71 × 102 | 0.00 × 100 | 6.15 × 102 | |
Mean | 9.22 × 100 | 2.37 × 101 | 5.79 × 102 | 1.48 × 103 | 4.93 × 102 | 2.75 × 102 | 1.33 × 10−1 | 6.13 × 102 | ||
Std | 2.52 × 100 | 4.46 × 100 | 2.94 × 102 | 3.00 × 102 | 1.31 × 102 | 1.62 × 101 | 3.38 × 10−1 | 1.08 × 101 | ||
p-value | - | 3.11 × 10−11+ | 2.88 × 10−11+ | 2.88 × 10−11+ | 2.88 × 10−11+ | 2.88 × 10−11+ | 3.86 × 10−12− | 2.86 × 10−11+ | ||
F9 | Median | 7.96 × 100 | 2.14 × 101 | 7.43 × 102 | 1.68 × 103 | 5.92 × 102 | 2.77 × 102 | 2.98 × 100 | 8.09 × 102 | |
Mean | 8.06 × 100 | 2.08 × 101 | 6.50 × 102 | 1.68 × 103 | 6.27 × 102 | 2.78 × 102 | 3.26 × 100 | 8.06 × 102 | ||
Std | 2.29 × 100 | 4.72 × 100 | 2.40 × 102 | 2.62 × 102 | 1.31 × 102 | 1.83 × 101 | 1.46 × 100 | 1.52 × 101 | ||
p-value | - | 4.34 × 10−11+ | 2.78 × 10−11+ | 2.78 × 10−11+ | 2.78 × 10−11+ | 2.78 × 10−11+ | 2.22 × 10−9− | 2.77 × 10−11+ | ||
F10 | Median | 6.11 × 102 | 1.63 × 103 | 2.79 × 104 | 1.78 × 104 | 7.72 × 103 | 6.51 × 103 | 1.01 × 102 | 1.64 × 104 | |
Mean | 6.60 × 102 | 1.79 × 103 | 2.78 × 104 | 2.20 × 104 | 8.58 × 103 | 6.55 × 103 | 1.17 × 102 | 1.65 × 104 | ||
Std | 3.85 × 102 | 7.29 × 102 | 7.77 × 102 | 7.13 × 103 | 2.27 × 103 | 7.46 × 102 | 1.16 × 102 | 4.17 × 102 | ||
p-value | - | 1.55 × 10−9+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.20 × 10−8− | 3.02 × 10−11+ | ||
F11 | Median | 1.43 × 103 | 1.81 × 103 | 2.89 × 104 | 2.17 × 104 | 7.99 × 103 | 5.73 × 103 | 1.25 × 103 | 1.31 × 104 | |
Mean | 1.44 × 103 | 1.85 × 103 | 2.87 × 104 | 2.29 × 104 | 8.34 × 103 | 5.66 × 103 | 1.23 × 103 | 1.31 × 104 | ||
Std | 3.41 × 102 | 4.59 × 102 | 9.63 × 102 | 6.21 × 103 | 1.97 × 103 | 4.87 × 102 | 5.13 × 102 | 4.55 × 102 | ||
p-value | - | 1.24 × 10−3+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 6.57 × 10−2= | 3.02 × 10−11+ | ||
F12 | Median | 3.80 × 100 | 3.97 × 100 | 3.99 × 100 | 1.04 × 100 | 6.78 × 10−1 | 4.00 × 100 | 3.93 × 100 | 2.03 × 10−2 | |
Mean | 3.85 × 100 | 3.99 × 100 | 3.97 × 100 | 1.19 × 100 | 7.28 × 10−1 | 3.93 × 100 | 3.96 × 100 | 2.03 × 10−2 | ||
Std | 2.16 × 10−1 | 2.21 × 10−1 | 2.00 × 10−1 | 5.49 × 10−1 | 2.81 × 10−1 | 3.04 × 10−1 | 2.10 × 10−1 | 6.72 × 10−3 | ||
p-value | - | 3.15 × 10−2+ | 3.92 × 10−2+ | 3.02 × 10−11− | 3.02 × 10−11− | 5.75 × 10−2= | 7.98 × 10−2= | 3.02 × 10−11− | ||
F13 | Median | 2.38 × 10−1 | 1.33 × 10−1 | 3.15 × 10−1 | 4.35 × 10−1 | 4.99 × 10−1 | 5.54 × 100 | 5.77 × 10−2 | 5.49 × 10−1 | |
Mean | 2.36 × 10−1 | 1.35 × 10−1 | 3.23 × 10−1 | 2.39 × 100 | 8.72 × 10−1 | 5.54 × 100 | 5.85 × 10−2 | 5.57 × 10−1 | ||
Std | 2.01 × 10−2 | 1.85 × 10−2 | 2.55 × 10−2 | 3.94 × 100 | 1.17 × 100 | 7.78 × 10−2 | 9.94 × 10−3 | 7.13 × 10−2 | ||
p-value | - | 3.02 × 10−11− | 3.69 × 10−11+ | 3.02 × 10−11+ | 2.15 × 10−10+ | 3.02 × 10−11+ | 3.02 × 10−11− | 3.02 × 10−11+ | ||
F14 | Median | 2.74 × 10−1 | 4.00 × 10−1 | 3.59 × 10−1 | 1.44 × 102 | 3.77 × 10−1 | 3.29 × 102 | 4.56 × 10−1 | 2.92 × 10−1 | |
Mean | 2.70 × 10−1 | 3.86 × 10−1 | 3.63 × 10−1 | 2.40 × 102 | 4.26 × 10−1 | 3.27 × 102 | 4.50 × 10−1 | 3.66 × 10−1 | ||
Std | 4.12 × 10−2 | 4.86 × 10−2 | 1.83 × 10−2 | 2.63 × 102 | 1.50 × 10−1 | 7.41 × 100 | 2.05 × 10−2 | 2.36 × 10−1 | ||
p-value | - | 3.82 × 10−9+ | 4.98 × 10−11+ | 3.02 × 10−11+ | 1.29 × 10−9+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F15 | Median | 1.04 × 101 | 1.04 × 101 | 6.55 × 101 | 5.57 × 102 | 1.93 × 102 | 1.90 × 105 | 1.20 × 101 | 1.38 × 101 | |
Mean | 1.06 × 101 | 1.03 × 101 | 6.01 × 101 | 2.48 × 107 | 2.48 × 105 | 1.90 × 105 | 1.22 × 101 | 1.45 × 101 | ||
Std | 8.45 × 10−1 | 8.26 × 10−1 | 1.66 × 101 | 7.66 × 107 | 1.33 × 106 | 3.06 × 104 | 1.07 × 100 | 2.62 × 100 | ||
p-value | - | 3.33 × 10−1= | 1.29 × 10−9+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.29 × 10−6+ | 1.69 × 10−9+ | ||
F16 | Median | 4.12 × 101 | 4.60 × 101 | 4.53 × 101 | 4.65 × 101 | 2.26 × 101 | 4.33 × 101 | 4.26 × 101 | 4.59 × 101 | |
Mean | 4.12 × 101 | 4.59 × 101 | 4.53 × 101 | 4.64 × 101 | 2.26 × 101 | 4.33 × 101 | 4.26 × 101 | 4.58 × 101 | ||
Std | 5.74 × 10−1 | 2.25 × 10−1 | 3.31 × 10−1 | 9.07 × 10−1 | 4.77 × 10−1 | 4.56 × 10−1 | 5.66 × 10−1 | 1.42 × 10−1 | ||
p-value | - | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11− | 3.69 × 10−11+ | 1.07 × 10−9+ | 3.02 × 10−11+ | ||
F4–16 | w/t/l | - | 8/2/3 | 11/1/1 | 11/0/2 | 10/0/3 | 11/2/0 | 5/4/4 | 10/0/3 | |
F17 | Hybrid Problems | Median | 7.10 × 102 | 8.16 × 102 | 2.78 × 105 | 1.29 × 109 | 1.33 × 107 | 9.57 × 107 | 3.87 × 107 | 5.48 × 103 |
Mean | 7.27 × 102 | 7.72 × 102 | 2.74 × 105 | 1.32 × 109 | 1.19 × 108 | 9.54 × 107 | 3.85 × 107 | 5.59 × 103 | ||
Std | 1.93 × 102 | 2.45 × 102 | 5.52 × 104 | 9.08 × 108 | 1.52 × 108 | 1.15 × 107 | 3.48 × 106 | 6.64 × 102 | ||
p-value | - | 3.26 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F18 | Median | 5.80 × 101 | 2.62 × 101 | 2.02 × 102 | 5.64 × 108 | 2.47 × 102 | 3.04 × 109 | 1.36 × 102 | 3.63 × 102 | |
Mean | 5.89 × 101 | 2.60 × 101 | 2.54 × 102 | 1.97 × 1010 | 1.41 × 109 | 3.01 × 109 | 1.73 × 102 | 3.63 × 102 | ||
Std | 1.37 × 101 | 7.82 × 100 | 1.87 × 102 | 2.58 × 1010 | 3.71 × 109 | 4.29 × 108 | 1.43 × 102 | 6.79 × 101 | ||
p-value | - | 7.39 × 10−11− | 7.12 × 10−9+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 2.50 × 10−3+ | 3.02 × 10−11+ | ||
F19 | Median | 9.09 × 101 | 9.40 × 101 | 9.44 × 101 | 5.32 × 101 | 2.61 × 101 | 5.03 × 102 | 6.97 × 101 | 6.03 × 101 | |
Mean | 9.10 × 101 | 9.40 × 101 | 9.44 × 101 | 2.43 × 103 | 2.57 × 101 | 5.14 × 102 | 7.21 × 101 | 6.28 × 101 | ||
Std | 1.21 × 100 | 1.38 × 100 | 1.41 × 100 | 4.59 × 103 | 2.12 × 100 | 6.67 × 101 | 1.71 × 101 | 1.41 × 101 | ||
p-value | - | 2.67 × 10−9+ | 3.16 × 10−10+ | 1.86 × 10−1= | 3.02 × 10−11− | 3.02 × 10−11+ | 9.51 × 10−6− | 8.48 × 10−9− | ||
F20 | Median | 6.20 × 100 | 9.31 × 100 | 8.31 × 103 | 2.43 × 105 | 6.28 × 104 | 2.68 × 104 | 1.08 × 105 | 6.01 × 102 | |
Mean | 6.68 × 100 | 9.56 × 100 | 8.43 × 103 | 2.33 × 106 | 6.75 × 104 | 2.60 × 104 | 1.08 × 105 | 6.36 × 102 | ||
Std | 2.34 × 100 | 2.40 × 100 | 2.00 × 103 | 5.76 × 106 | 3.67 × 104 | 2.96 × 103 | 1.89 × 104 | 1.92 × 102 | ||
p-value | - | 8.88 × 10−6+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F21 | Median | 2.23 × 102 | 1.83 × 102 | 1.59 × 105 | 9.21 × 108 | 5.22 × 106 | 3.03 × 106 | 2.42 × 107 | 3.58 × 103 | |
Mean | 2.51 × 102 | 1.98 × 102 | 1.51 × 105 | 8.09 × 108 | 2.02 × 107 | 3.18 × 106 | 2.40 × 107 | 3.51 × 103 | ||
Std | 8.04 × 101 | 6.34 × 101 | 3.04 × 104 | 5.30 × 108 | 3.12 × 107 | 1.09 × 106 | 2.95 × 106 | 5.75 × 102 | ||
p-value | - | 1.08 × 10−2− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | ||
F22 | Median | 3.89 × 101 | 3.75 × 101 | 3.54 × 103 | 4.09 × 103 | 1.86 × 103 | 7.75 × 101 | 2.58 × 102 | 1.20 × 103 | |
Mean | 4.62 × 101 | 6.56 × 101 | 3.49 × 103 | 1.07 × 105 | 2.43 × 103 | 9.21 × 101 | 2.90 × 102 | 1.26 × 103 | ||
Std | 3.11 × 101 | 5.21 × 101 | 2.48 × 102 | 2.59 × 105 | 1.73 × 103 | 4.21 × 101 | 2.09 × 102 | 3.12 × 102 | ||
p-value | - | 6.00 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 5.00 × 10−9+ | 1.43 × 10−8+ | 3.02 × 10−11+ | ||
F17–22 | w/t/l | - | 2/2/2 | 6/0/0 | 5/1/0 | 5/0/1 | 6/0/0 | 5/0/1 | 5/0/1 | |
F23 | Composition Problems | Median | 3.48 × 102 | 3.48 × 102 | 3.48 × 102 | 6.57 × 103 | 1.64 × 103 | 4.43 × 102 | 3.59 × 102 | 2.00 × 102 |
Mean | 3.48 × 102 | 3.48 × 102 | 3.48 × 102 | 6.72 × 103 | 1.44 × 103 | 4.41 × 102 | 3.59 × 102 | 2.00 × 102 | ||
Std | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 1.60 × 103 | 6.17 × 102 | 1.26 × 101 | 2.91 × 100 | 0.00 × 100 | ||
p-value | - | NaN= | NaN= | 1.21 × 10−12+ | 3.36 × 10−11+ | 1.21 × 10−12+ | 1.21 × 10−12+ | 1.69 × 10−14− | ||
F24 | Median | 3.72 × 102 | 3.72 × 102 | 3.62 × 102 | 5.05 × 102 | 3.39 × 102 | 3.82 × 102 | 3.82 × 102 | 2.00 × 102 | |
Mean | 3.73 × 102 | 3.73 × 102 | 3.61 × 102 | 5.07 × 102 | 4.29 × 102 | 3.82 × 102 | 3.82 × 102 | 2.00 × 102 | ||
Std | 2.22 × 100 | 1.90 × 100 | 4.63 × 100 | 2.74 × 101 | 1.32 × 102 | 1.41 × 100 | 1.59 × 100 | 0.00 × 100 | ||
p-value | - | 7.73 × 10−1= | 4.08 × 10−11− | 3.02 × 10−11+ | 1.91 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 1.21 × 10−12− | ||
F25 | Median | 2.15 × 102 | 2.16 × 102 | 2.00 × 102 | 1.35 × 103 | 4.27 × 102 | 2.42 × 102 | 2.22 × 102 | 2.00 × 102 | |
Mean | 2.15 × 102 | 2.16 × 102 | 2.00 × 102 | 1.37 × 103 | 4.20 × 102 | 2.42 × 102 | 2.23 × 102 | 2.00 × 102 | ||
Std | 3.90 × 10−1 | 8.62 × 10−1 | 0.00 × 100 | 2.04 × 102 | 5.42 × 101 | 3.06 × 100 | 9.36 × 100 | 0.00 × 100 | ||
p-value | - | 1.11 × 10−4+ | 1.21 × 10−12− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 2.39 × 10−4+ | 1.21 × 10−12− | ||
F26 | Median | 2.00 × 102 | 2.00 × 102 | 2.00 × 102 | 1.07 × 103 | 1.01 × 102 | 2.00 × 102 | 2.00 × 102 | 2.00 × 102 | |
Mean | 2.00 × 102 | 2.00 × 102 | 2.00 × 102 | 8.64 × 102 | 1.25 × 102 | 2.00 × 102 | 2.00 × 102 | 2.00 × 102 | ||
Std | 2.50 × 10−4 | 3.97 × 10−4 | 7.67 × 10−3 | 4.77 × 102 | 6.80 × 101 | 2.31 × 10−3 | 4.88 × 10−2 | 0.00 × 100 | ||
p-value | - | 3.16 × 10−1= | 1.96 × 10−12+ | 9.65 × 10−8+ | 1.02 × 10−6− | 9.17 × 10−6+ | 2.59 × 10−11+ | 9.91 × 10−13− | ||
F27 | Median | 3.00 × 102 | 4.65 × 102 | 3.98 × 102 | 5.45 × 103 | 2.42 × 103 | 1.78 × 103 | 3.13 × 102 | 2.00 × 102 | |
Mean | 3.04 × 102 | 4.96 × 102 | 4.15 × 102 | 5.50 × 103 | 2.43 × 103 | 1.78 × 103 | 3.23 × 102 | 2.00 × 102 | ||
Std | 7.91 × 100 | 1.13 × 102 | 5.12 × 101 | 3.00 × 102 | 1.17 × 102 | 1.05 × 102 | 2.48 × 101 | 0.00 × 100 | ||
p-value | - | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 7.60 × 10−7+ | 1.21 × 10−12− | ||
F28 | Median | 2.31 × 103 | 2.79 × 103 | 2.17 × 103 | 2.99 × 104 | 1.07 × 104 | 3.99 × 103 | 8.14 × 102 | 2.00 × 102 | |
Mean | 2.31 × 103 | 2.74 × 103 | 2.17 × 103 | 2.98 × 104 | 1.05 × 104 | 4.45 × 103 | 8.14 × 102 | 2.00 × 102 | ||
Std | 1.10 × 102 | 5.59 × 102 | 5.72 × 101 | 5.35 × 103 | 1.89 × 103 | 1.10 × 103 | 1.85 × 101 | 0.00 × 100 | ||
p-value | - | 1.17 × 10−2+ | 2.38 × 10−7− | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11− | 1.21 × 10−12− | ||
F29 | Median | 1.13 × 103 | 7.44 × 102 | 1.79 × 103 | 5.47 × 109 | 9.15 × 108 | 1.49 × 105 | 3.32 × 102 | 2.00 × 102 | |
Mean | 1.26 × 103 | 7.85 × 102 | 1.80 × 103 | 5.60 × 109 | 9.62 × 108 | 1.69 × 105 | 4.54 × 102 | 2.00 × 102 | ||
Std | 2.79 × 102 | 1.55 × 102 | 4.30 × 101 | 1.23 × 109 | 2.57 × 108 | 1.26 × 105 | 3.73 × 102 | 0.00 × 100 | ||
p-value | - | 3.16 × 10−10− | 3.82 × 10−10+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.02 × 10−11+ | 5.00 × 10−9− | 1.21 × 10−12− | ||
F30 | Median | 9.17 × 103 | 4.37 × 103 | 8.66 × 103 | 3.02 × 108 | 1.31 × 107 | 7.14 × 104 | 1.92 × 103 | 2.00 × 102 | |
Mean | 8.91 × 103 | 4.71 × 103 | 8.82 × 103 | 3.11 × 108 | 1.38 × 107 | 8.01 × 104 | 1.88 × 103 | 2.00 × 102 | ||
Std | 1.03 × 103 | 1.21 × 103 | 6.54 × 102 | 1.03 × 108 | 5.63 × 106 | 2.63 × 104 | 4.86 × 102 | 0.00 × 100 | ||
p-value | - | 9.92 × 10−11− | 3.87 × 10−1= | 3.02 × 10−11+ | 3.02 × 10−11+ | 3.90 × 10−10+ | 3.02 × 10−11− | 1.21 × 10−12− | ||
F23–30 | w/t/l | - | 3/3/2 | 3/2/3 | 8/0/0 | 6/1/1 | 8/0/0 | 5/0/3 | 0/0/8 | |
w/t/l | - | 13/7/10 | 23/3/4 | 26/1/3 | 24/1/5 | 28/2/0 | 18/4/8 | 15/0/15 | ||
Rank | 2.70 | 3.37 | 4.58 | 7.07 | 5.27 | 5.83 | 4.03 | 3.15 |
sr = 0.1 | sr = 0.2 | sr = 0.3 | sr = 0.4 | sr = 0.5 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | cs = 0.1 | cs = 0.2 | cs = 0.3 | cs = 0.4 | cs = 0.5 | cs = 0.6 | cs = 0.7 | cs = 0.8 | cs = 0.9 | cs = 1.0 | cs = 0.2 | cs = 0.4 | cs = 0.6 | cs = 0.8 | cs = 1.0 | cs = 0.3 | cs = 0.6 | cs = 0.9 | cs = 1.0 | cs = 0.4 | cs = 0.8 | cs = 1.0 | cs = 0.5 | cs = 1.0 |
cs/sr = 1.0 | cs/sr = 2.0 | cs/sr = 3.0 | cs/sr = 4.0 | cs/sr = 5.0 | cs/sr = 6.0 | cs/sr = 7.0 | cs/sr = 8.0 | cs/sr = 9.0 | cs/sr = 10.0 | cs/sr = 1.0 | cs/sr = 2.0 | cs/sr = 3.0 | cs/sr = 4.0 | cs/sr = 5.0 | cs/sr = 1.0 | cs/sr = 2.0 | cs/sr = 3.0 | cs/sr = 3.3 | cs/sr = 1.0 | cs/sr = 2.0 | cs/sr = 2.5 | cs/sr = 1.0 | cs/sr = 2.0 | |
F1 | 2.32 × 108 | 2.33 × 107 | 1.44 × 105 | 3.43 × 103 | 5.87 × 10−14 | 5.74 × 10−10 | 4.28 × 10−6 | 2.57 × 10−2 | 5.70 × 102 | 1.03 × 108 | 4.00 × 108 | 3.98 × 106 | 4.67 × 101 | 1.87 × 10−2 | 9.68 × 107 | 6.93 × 108 | 9.64 × 104 | 2.52 × 103 | 1.02 × 108 | 1.05 × 109 | 3.46 × 103 | 1.26 × 108 | 1.44 × 109 | 1.47 × 108 |
F2 | 3.39 × 1010 | 1.41 × 1010 | 5.17 × 108 | 9.41 × 101 | 9.35 × 10−12 | 1.08 × 10−7 | 7.97 × 10−4 | 5.14 × 100 | 4.17 × 104 | 2.97 × 109 | 3.94 × 1010 | 7.22 × 108 | 1.87 × 10−2 | 4.16 × 100 | 2.34 × 109 | 4.71 × 1010 | 3.71 × 108 | 2.33 × 104 | 2.15 × 109 | 5.63 × 1010 | 9.39 × 102 | 2.09 × 109 | 6.48 × 1010 | 2.01 × 109 |
F3 | 3.47 × 104 | 1.30 × 104 | 4.03 × 102 | 0.00 × 100 | 0.00 × 100 | 2.80 × 10−13 | 2.45 × 10−9 | 1.77 × 10−5 | 1.75 × 10−1 | 1.13 × 105 | 3.72 × 104 | 5.53 × 103 | 1.71 × 10−13 | 1.02 × 10−5 | 1.13 × 105 | 4.33 × 104 | 2.81 × 102 | 8.26 × 10−2 | 1.17 × 105 | 4.81 × 104 | 9.73 × 10−6 | 1.17 × 105 | 5.47 × 104 | 1.17 × 105 |
F4 | 4.69 × 103 | 1.46 × 103 | 1.36 × 102 | 9.02 × 101 | 8.96 × 101 | 9.26 × 101 | 9.42 × 101 | 9.65 × 101 | 9.73 × 101 | 3.38 × 102 | 5.58 × 103 | 6.39 × 102 | 9.31 × 101 | 9.53 × 101 | 3.31 × 102 | 6.81 × 103 | 1.33 × 102 | 9.55 × 101 | 3.52 × 102 | 8.82 × 103 | 9.32 × 100 | 3.76 × 102 | 1.06 × 104 | 4.20 × 102 |
F5 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 |
F6 | 1.91 × 101 | 8.04 × 100 | 1.36 × 100 | 1.65 × 10−1 | 6.99 × 10−2 | 1.89 × 10−2 | 3.50 × 10−2 | 3.66 × 10−1 | 1.80 × 100 | 3.38 × 101 | 1.39 × 101 | 2.32 × 100 | 1.21 × 10−1 | 1.46 × 10−1 | 3.12 × 101 | 1.44 × 101 | 1.06 × 10−1 | 1.51 × 100 | 3.06 × 101 | 1.58 × 101 | 1.50 × 10−1 | 3.06 × 101 | 1.76 × 101 | 3.13 × 101 |
F7 | 3.19 × 102 | 1.29 × 102 | 6.81 × 100 | 0.00 × 100 | 0.00 × 100 | 1.17 × 10−13 | 1.03 × 10−9 | 6.92 × 10−6 | 6.71 × 10−2 | 3.39 × 101 | 3.68 × 102 | 6.40 × 101 | 1.14 × 10−13 | 4.14 × 10−6 | 2.64 × 101 | 4.33 × 102 | 7.17 × 100 | 3.47 × 10−2 | 2.46 × 101 | 5.12 × 102 | 4.55 × 10−6 | 2.45 × 101 | 5.92 × 102 | 2.44 × 101 |
F8 | 1.61 × 102 | 8.34 × 101 | 3.44 × 101 | 1.63 × 101 | 8.86 × 100 | 6.00 × 100 | 4.88 × 100 | 3.39 × 100 | 1.71 × 101 | 3.02 × 102 | 1.26 × 102 | 4.67 × 101 | 1.19 × 101 | 4.02 × 100 | 2.97 × 102 | 1.14 × 102 | 2.81 × 101 | 1.09 × 101 | 2.96 × 102 | 1.15 × 102 | 1.56 × 101 | 2.96 × 102 | 1.29 × 102 | 2.96 × 102 |
F9 | 1.60 × 102 | 7.09 × 101 | 2.67 × 101 | 9.24 × 100 | 6.53 × 100 | 4.11 × 100 | 3.68 × 100 | 3.79 × 100 | 1.15 × 102 | 3.32 × 102 | 1.09 × 102 | 3.34 × 101 | 6.37 × 100 | 2.70 × 100 | 3.27 × 102 | 1.02 × 102 | 1.93 × 101 | 3.32 × 101 | 3.26 × 102 | 1.07 × 102 | 9.42 × 100 | 3.21 × 102 | 1.23 × 102 | 3.26 × 102 |
F10 | 4.63 × 103 | 2.46 × 103 | 1.25 × 103 | 8.25 × 102 | 5.36 × 102 | 3.14 × 102 | 2.76 × 102 | 1.30 × 102 | 3.55 × 102 | 8.99 × 103 | 3.26 × 103 | 1.37 × 103 | 7.34 × 102 | 2.96 × 102 | 8.83 × 103 | 2.79 × 103 | 1.05 × 103 | 9.53 × 102 | 9.21 × 103 | 2.70 × 103 | 1.23 × 103 | 9.28 × 103 | 2.86 × 103 | 1.01 × 104 |
F11 | 4.85 × 103 | 2.46 × 103 | 1.31 × 103 | 8.47 × 102 | 6.18 × 102 | 4.83 × 102 | 3.77 × 102 | 3.00 × 102 | 3.22 × 103 | 1.05 × 104 | 3.24 × 103 | 1.33 × 103 | 7.81 × 102 | 5.04 × 102 | 1.05 × 104 | 2.87 × 103 | 1.26 × 103 | 3.65 × 103 | 1.05 × 104 | 2.73 × 103 | 1.23 × 103 | 1.08 × 104 | 2.66 × 103 | 1.10 × 104 |
F12 | 1.14 × 100 | 3.17 × 100 | 3.21 × 100 | 3.20 × 100 | 3.15 × 100 | 3.28 × 100 | 3.23 × 100 | 3.18 × 100 | 3.23 × 100 | 3.42 × 100 | 3.21 × 100 | 3.28 × 100 | 3.20 × 100 | 3.30 × 100 | 3.20 × 100 | 3.27 × 100 | 3.28 × 100 | 3.22 × 100 | 3.35 × 100 | 3.26 × 100 | 3.28 × 100 | 3.25 × 100 | 3.25 × 100 | 3.33 × 100 |
F13 | 3.81 × 100 | 1.53 × 100 | 1.78 × 10−1 | 1.43 × 10−1 | 1.40 × 10−1 | 1.30 × 10−1 | 1.08 × 10−1 | 8.13 × 10−2 | 6.16 × 10−2 | 4.44 × 10−1 | 4.01 × 100 | 3.50 × 10−1 | 1.33 × 10−1 | 9.14 × 10−2 | 3.78 × 10−1 | 4.38 × 100 | 1.63 × 10−1 | 6.22 × 10−2 | 4.16 × 10−1 | 4.74 × 100 | 1.22 × 10−1 | 4.24 × 10−1 | 5.13 × 100 | 4.27 × 10−1 |
F14 | 6.72 × 101 | 2.05 × 101 | 2.85 × 10−1 | 3.37 × 10−1 | 3.30 × 10−1 | 3.15 × 10−1 | 2.93 × 10−1 | 2.61 × 10−1 | 2.69 × 10−1 | 8.46 × 100 | 8.23 × 101 | 8.36 × 10−1 | 3.20 × 10−1 | 2.98 × 10−1 | 5.38 × 100 | 9.72 × 101 | 3.02 × 10−1 | 3.06 × 10−1 | 3.74 × 100 | 1.14 × 102 | 3.26 × 10−1 | 4.16 × 100 | 1.37 × 102 | 3.64 × 100 |
F15 | 5.07 × 103 | 5.31 × 101 | 5.65 × 100 | 4.75 × 100 | 4.94 × 100 | 4.77 × 100 | 7.47 × 100 | 1.38 × 101 | 2.54 × 101 | 8.19 × 101 | 7.77 × 103 | 6.69 × 100 | 5.02 × 100 | 1.30 × 101 | 6.93 × 101 | 1.20 × 104 | 5.41 × 100 | 2.34 × 101 | 6.93 × 101 | 2.26 × 104 | 1.27 × 101 | 7.29 × 101 | 4.24 × 104 | 8.86 × 101 |
F16 | 1.72 × 101 | 1.58 × 101 | 1.84 × 101 | 1.91 × 101 | 2.03 × 101 | 2.02 × 101 | 2.02 × 101 | 2.01 × 101 | 2.02 × 101 | 2.03 × 101 | 1.74 × 101 | 1.97 × 101 | 2.07 × 101 | 2.08 × 101 | 2.05 × 101 | 2.00 × 101 | 2.13 × 101 | 2.12 × 101 | 2.10 × 101 | 2.12 × 101 | 2.20 × 101 | 2.16 × 101 | 2.24 × 101 | 2.24 × 101 |
F17 | 1.18 × 107 | 6.54 × 102 | 3.78 × 102 | 2.87 × 102 | 2.51 × 102 | 2.42 × 102 | 2.30 × 102 | 3.50 × 102 | 7.20 × 102 | 5.30 × 106 | 2.58 × 107 | 3.90 × 102 | 3.20 × 102 | 4.51 × 102 | 6.01 × 106 | 4.60 × 107 | 4.82 × 102 | 9.18 × 102 | 6.59 × 106 | 8.43 × 107 | 6.54 × 102 | 7.59 × 106 | 1.23 × 108 | 9.22 × 106 |
F18 | 2.44 × 108 | 1.30 × 102 | 9.18 × 101 | 4.83 × 101 | 2.76 × 101 | 2.44 × 101 | 2.42 × 101 | 2.63 × 101 | 1.63 × 102 | 1.72 × 108 | 8.31 × 108 | 8.80 × 101 | 3.95 × 101 | 4.11 × 101 | 1.40 × 108 | 1.77 × 109 | 7.36 × 101 | 1.66 × 102 | 1.32 × 108 | 3.13 × 109 | 7.62 × 101 | 1.27 × 108 | 4.56 × 109 | 1.22 × 108 |
F19 | 8.07 × 101 | 3.42 × 101 | 2.69 × 101 | 1.45 × 101 | 1.23 × 101 | 1.19 × 101 | 1.22 × 101 | 1.23 × 101 | 1.31 × 101 | 8.38 × 101 | 9.25 × 101 | 3.61 × 101 | 1.44 × 101 | 1.23 × 101 | 8.69 × 101 | 1.34 × 102 | 3.42 × 101 | 1.30 × 101 | 8.90 × 101 | 2.11 × 102 | 1.62 × 101 | 9.02 × 101 | 3.22 × 102 | 9.37 × 101 |
F20 | 7.88 × 102 | 9.08 × 101 | 3.64 × 101 | 9.82 × 100 | 5.40 × 100 | 3.19 × 100 | 2.71 × 100 | 4.25 × 100 | 3.90 × 101 | 2.17 × 104 | 1.21 × 103 | 4.07 × 101 | 7.49 × 100 | 5.36 × 100 | 2.97 × 104 | 1.69 × 103 | 2.34 × 101 | 3.38 × 101 | 3.55 × 104 | 2.51 × 103 | 2.10 × 101 | 3.88 × 104 | 3.84 × 103 | 3.82 × 104 |
F21 | 1.22 × 104 | 9.05 × 102 | 4.28 × 102 | 3.15 × 102 | 2.61 × 102 | 2.62 × 102 | 2.84 × 102 | 3.24 × 102 | 5.40 × 102 | 3.39 × 106 | 1.45 × 104 | 4.69 × 102 | 3.00 × 102 | 3.99 × 102 | 4.06 × 106 | 2.85 × 104 | 4.04 × 102 | 7.46 × 102 | 4.15 × 106 | 5.22 × 104 | 5.38 × 102 | 4.96 × 106 | 1.19 × 105 | 5.55 × 106 |
F22 | 1.48 × 102 | 6.22 × 101 | 5.03 × 101 | 3.77 × 101 | 3.87 × 101 | 5.43 × 101 | 5.87 × 101 | 6.81 × 101 | 8.39 × 101 | 8.07 × 102 | 1.43 × 102 | 7.32 × 101 | 6.23 × 101 | 7.91 × 101 | 8.02 × 102 | 3.79 × 102 | 4.38 × 101 | 1.20 × 102 | 8.64 × 102 | 1.12 × 103 | 8.50 × 101 | 8.52 × 102 | 3.10 × 103 | 8.66 × 102 |
F23 | 4.62 × 102 | 3.93 × 102 | 3.52 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.94 × 102 | 4.53 × 102 | 3.75 × 102 | 3.44 × 102 | 3.44 × 102 | 4.02 × 102 | 4.62 × 102 | 3.52 × 102 | 3.44 × 102 | 4.14 × 102 | 4.94 × 102 | 3.44 × 102 | 4.24 × 102 | 5.24 × 102 | 4.44 × 102 |
F24 | 2.80 × 102 | 2.74 × 102 | 2.73 × 102 | 2.72 × 102 | 2.72 × 102 | 2.70 × 102 | 2.70 × 102 | 2.69 × 102 | 2.70 × 102 | 3.27 × 102 | 2.76 × 102 | 2.73 × 102 | 2.73 × 102 | 2.71 × 102 | 3.22 × 102 | 2.75 × 102 | 2.73 × 102 | 2.73 × 102 | 3.21 × 102 | 2.74 × 102 | 2.74 × 102 | 3.21 × 102 | 2.72 × 102 | 3.22 × 102 |
F25 | 2.22 × 102 | 2.15 × 102 | 2.09 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.36 × 102 | 2.20 × 102 | 2.13 × 102 | 2.05 × 102 | 2.05 × 102 | 2.47 × 102 | 2.21 × 102 | 2.09 × 102 | 2.05 × 102 | 2.51 × 102 | 2.20 × 102 | 2.05 × 102 | 2.51 × 102 | 2.19 × 102 | 2.51 × 102 |
F26 | 1.27 × 102 | 1.11 × 102 | 1.04 × 102 | 1.01 × 102 | 1.03 × 102 | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.62 × 102 | 1.33 × 102 | 1.17 × 102 | 1.05 × 102 | 1.05 × 102 | 1.85 × 102 | 1.38 × 102 | 1.19 × 102 | 1.06 × 102 | 1.91 × 102 | 1.64 × 102 | 1.08 × 102 | 1.99 × 102 | 1.71 × 102 | 1.80 × 102 |
F27 | 1.05 × 103 | 6.94 × 102 | 4.08 × 102 | 3.37 × 102 | 3.29 × 102 | 3.36 × 102 | 3.30 × 102 | 3.34 × 102 | 3.81 × 102 | 1.08 × 103 | 9.37 × 102 | 5.39 × 102 | 3.22 × 102 | 3.29 × 102 | 1.03 × 103 | 9.48 × 102 | 3.93 × 102 | 3.62 × 102 | 1.02 × 103 | 1.02 × 103 | 3.24 × 102 | 1.02 × 103 | 1.10 × 103 | 1.04 × 103 |
F28 | 2.40 × 103 | 1.73 × 103 | 1.51 × 103 | 1.16 × 103 | 1.17 × 103 | 1.18 × 103 | 1.21 × 103 | 1.23 × 103 | 1.28 × 103 | 1.47 × 103 | 2.34 × 103 | 1.47 × 103 | 1.16 × 103 | 1.25 × 103 | 1.51 × 103 | 2.43 × 103 | 1.48 × 103 | 1.30 × 103 | 1.56 × 103 | 2.15 × 103 | 1.23 × 103 | 1.56 × 103 | 2.33 × 103 | 1.56 × 103 |
F29 | 1.24 × 104 | 2.66 × 103 | 1.97 × 103 | 1.20 × 103 | 8.88 × 102 | 9.91 × 102 | 1.29 × 103 | 1.71 × 103 | 4.11 × 103 | 1.07 × 106 | 1.16 × 104 | 1.64 × 103 | 9.69 × 102 | 1.62 × 103 | 1.70 × 106 | 3.79 × 104 | 1.59 × 103 | 4.49 × 103 | 5.00 × 106 | 4.45 × 104 | 1.24 × 103 | 4.60 × 106 | 1.15 × 105 | 7.17 × 106 |
F30 | 1.68 × 105 | 3.69 × 104 | 1.66 × 104 | 1.06 × 104 | 9.03 × 103 | 8.77 × 103 | 9.08 × 103 | 9.47 × 103 | 9.29 × 103 | 3.70 × 104 | 2.36 × 105 | 2.54 × 104 | 9.83 × 103 | 8.95 × 103 | 5.48 × 104 | 3.11 × 105 | 1.73 × 104 | 9.12 × 103 | 5.35 × 104 | 5.07 × 105 | 9.99 × 103 | 6.20 × 104 | 6.99 × 105 | 7.81 × 104 |
Rank | 8.83 | 7.43 | 6.03 | 4.53 | 3.25 | 3.25 | 3.22 | 3.65 | 5.73 | 9.07 | 4.20 | 3.00 | 1.62 | 1.98 | 4.20 | 3.30 | 1.70 | 1.60 | 3.40 | 2.43 | 1.20 | 2.37 | 1.57 | 1.43 |
sr = 0.1 | sr = 0.2 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | cs = 0.1 | cs = 0.2 | cs = 0.3 | cs = 0.4 | cs = 0.5 | cs = 0.6 | cs = 0.7 | cs = 0.8 | cs = 0.9 | cs = 1.0 | Adaptive − cs | cs = 0.2 | cs = 0.4 | cs = 0.6 | cs = 0.8 | cs = 1.0 | Adaptive − cs |
F1 | 2.32 × 108 | 2.33 × 107 | 1.44 × 105 | 3.43 × 103 | 5.87 × 10−14 | 5.74 × 10−10 | 4.28 × 10−6 | 2.57 × 10−2 | 5.70 × 102 | 1.03 × 108 | 1.47 × 10−14 | 4.00 × 108 | 3.98 × 106 | 4.67 × 101 | 1.87 × 10−2 | 9.68 × 107 | 2.53 × 10−13 |
F2 | 3.39 × 108 | 1.41 × 1010 | 5.17 × 108 | 9.41 × 101 | 9.35 × 10−12 | 1.08 × 10−7 | 7.97 × 10−4 | 5.14 × 100 | 4.17 × 104 | 2.97 × 109 | 2.04 × 10−12 | 3.94 × 1010 | 7.22 × 109 | 1.87 × 10−2 | 4.16 × 100 | 2.34 × 109 | 3.83 × 10−11 |
F3 | 3.47 × 104 | 1.30 × 104 | 4.03 × 102 | 0.00 × 100 | 0.00 × 100 | 2.80 × 10−13 | 2.45 × 10−9 | 1.77 × 10−5 | 1.75 × 10−1 | 1.13 × 105 | 0.00 × 100 | 3.72 × 104 | 5.53 × 103 | 1.71 × 10−14 | 1.02 × 10−5 | 1.13 × 105 | 0.00 × 100 |
F4 | 4.69 × 103 | 1.46 × 103 | 1.36 × 102 | 9.02 × 101 | 8.96 × 101 | 9.26 × 101 | 9.42 × 101 | 9.65 × 101 | 9.73 × 101 | 3.38 × 102 | 9.31 × 101 | 5.58 × 103 | 6.39 × 102 | 9.31 × 101 | 9.53 × 101 | 3.31 × 102 | 9.35 × 101 |
F5 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 |
F6 | 1.91 × 101 | 8.04 × 100 | 1.36 × 100 | 1.65 × 10−1 | 6.99 × 10−2 | 1.89 × 10−2 | 3.50 × 10−2 | 3.66 × 10−1 | 1.80 × 100 | 3.38 × 101 | 1.74 × 10−2 | 1.39 × 101 | 2.32 × 100 | 1.21 × 10−1 | 1.46 × 10−1 | 3.12 × 101 | 2.20 × 10−4 |
F7 | 3.19 × 102 | 1.29 × 102 | 6.81 × 100 | 0.00 × 100 | 0.00 × 100 | 1.17 × 10−13 | 1.03 × 10−9 | 6.92 × 10−6 | 6.71 × 10−2 | 3.39 × 101 | 0.00 × 100 | 3.68 × 102 | 6.40 × 101 | 1.14 × 10−13 | 4.14 × 10−6 | 2.64 × 101 | 0.00 × 100 |
F8 | 1.61 × 102 | 8.34 × 101 | 3.44 × 101 | 1.63 × 101 | 8.86 × 100 | 6.00 × 100 | 4.88 × 100 | 3.39 × 100 | 1.71 × 101 | 3.02 × 102 | 3.05 × 100 | 1.26 × 102 | 4.67 × 101 | 1.19 × 101 | 4.02 × 100 | 2.97 × 102 | 2.35 × 100 |
F9 | 1.60 × 102 | 7.09 × 101 | 2.67 × 101 | 9.24 × 100 | 6.53 × 100 | 4.11 × 100 | 3.68 × 100 | 3.79 × 100 | 1.15 × 102 | 3.32 × 102 | 2.06 × 100 | 1.09 × 102 | 3.34 × 101 | 6.37 × 100 | 2.70 × 100 | 3.27 × 102 | 1.86 × 100 |
F10 | 4.63 × 103 | 2.46 × 103 | 1.25 × 103 | 8.25 × 102 | 5.36 × 102 | 3.14 × 102 | 2.76 × 102 | 1.30 × 102 | 3.55 × 102 | 8.99 × 103 | 7.00 × 101 | 3.26 × 103 | 1.37 × 103 | 7.34 × 102 | 2.96 × 102 | 8.83 × 103 | 1.12 × 102 |
F11 | 4.85 × 103 | 2.46 × 103 | 1.31 × 103 | 8.47 × 102 | 6.18 × 102 | 4.83 × 102 | 3.77 × 102 | 3.00 × 102 | 3.22 × 103 | 1.05 × 104 | 1.22 × 102 | 3.24 × 103 | 1.33 × 103 | 7.81 × 102 | 5.04 × 102 | 1.05 × 104 | 1.72 × 102 |
F12 | 1.14 × 100 | 3.17 × 100 | 3.21 × 100 | 3.20 × 100 | 3.15 × 100 | 3.28 × 100 | 3.23 × 100 | 3.18 × 100 | 3.23 × 100 | 3.42 × 100 | 3.27 × 100 | 3.21 × 100 | 3.28 × 100 | 3.20 × 100 | 3.30 × 100 | 3.20 × 100 | 3.16 × 100 |
F13 | 3.81 × 100 | 1.53 × 100 | 1.78 × 10−1 | 1.43 × 10−1 | 1.40 × 10−1 | 1.30 × 10−1 | 1.08 × 10−1 | 8.13 × 10−2 | 6.16 × 10−2 | 4.44 × 10−1 | 1.47 × 10−1 | 4.01 × 100 | 3.50 × 10−1 | 1.33 × 10−1 | 9.14 × 10−2 | 3.78 × 10−1 | 1.67 × 10−1 |
F14 | 6.72 × 101 | 2.05 × 101 | 2.85 × 10−1 | 3.37 × 10−1 | 3.30 × 10−1 | 3.15 × 10−1 | 2.93 × 10−1 | 2.61 × 10−1 | 2.69 × 10−1 | 8.46 × 100 | 2.81 × 10−1 | 8.23 × 101 | 8.36 × 10−1 | 3.20 × 10−1 | 2.98 × 10−1 | 5.38 × 100 | 2.96 × 10−1 |
F15 | 5.07 × 103 | 5.31 × 101 | 5.65 × 100 | 4.75 × 100 | 4.94 × 100 | 4.77 × 100 | 7.47 × 100 | 1.38 × 101 | 2.54 × 101 | 8.19 × 101 | 4.78 × 100 | 7.77 × 103 | 6.69 × 100 | 5.02 × 100 | 1.30 × 101 | 6.93 × 101 | 5.04 × 100 |
F16 | 1.72 × 101 | 1.58 × 101 | 1.84 × 101 | 1.91 × 101 | 2.03 × 101 | 2.02 × 101 | 2.02 × 101 | 2.01 × 101 | 2.02 × 101 | 2.03 × 101 | 1.80 × 101 | 1.74 × 101 | 1.97 × 101 | 2.07 × 101 | 2.08 × 101 | 2.05 × 101 | 1.86 × 101 |
F17 | 1.18 × 107 | 6.54 × 102 | 3.78 × 102 | 2.87 × 102 | 2.51 × 102 | 2.42 × 102 | 2.30 × 102 | 3.50 × 102 | 7.20 × 102 | 5.30 × 106 | 1.28 × 102 | 2.58 × 107 | 3.90 × 102 | 3.20 × 102 | 4.51 × 102 | 6.01 × 106 | 1.40 × 102 |
F18 | 2.44 × 108 | 1.30 × 102 | 9.18 × 101 | 4.83 × 101 | 2.76 × 101 | 2.44 × 101 | 2.42 × 101 | 2.63 × 101 | 1.63 × 102 | 1.72 × 108 | 7.69 × 100 | 8.31 × 108 | 8.80 × 101 | 3.95 × 101 | 4.11 × 101 | 1.40 × 108 | 1.40 × 101 |
F19 | 8.07 × 101 | 3.42 × 101 | 2.69 × 101 | 1.45 × 101 | 1.23 × 101 | 1.19 × 101 | 1.22 × 101 | 1.23 × 101 | 1.31 × 101 | 8.38 × 101 | 1.11 × 101 | 9.25 × 101 | 3.61 × 101 | 1.44 × 101 | 1.23 × 101 | 8.69 × 101 | 1.12 × 101 |
F20 | 7.88 × 102 | 9.08 × 101 | 3.64 × 101 | 9.82 × 100 | 5.40 × 100 | 3.19 × 100 | 2.71 × 100 | 4.25 × 100 | 3.90 × 101 | 2.17 × 104 | 2.04 × 100 | 1.21 × 103 | 4.07 × 101 | 7.49 × 100 | 5.36 × 100 | 2.97 × 104 | 2.17 × 100 |
F21 | 1.22 × 104 | 9.05 × 102 | 4.28 × 102 | 3.15 × 102 | 2.61 × 102 | 2.62 × 102 | 2.84 × 102 | 3.24 × 102 | 5.40 × 102 | 3.39 × 106 | 2.12 × 102 | 1.45 × 104 | 4.69 × 102 | 3.00 × 102 | 3.99 × 102 | 4.06 × 106 | 2.13 × 102 |
F22 | 1.48 × 102 | 6.22 × 101 | 5.03 × 101 | 3.77 × 101 | 3.87 × 101 | 5.43 × 101 | 5.87 × 101 | 6.81 × 101 | 8.39 × 101 | 8.07 × 102 | 3.70 × 101 | 1.43 × 102 | 7.32 × 101 | 6.23 × 101 | 7.91 × 101 | 8.02 × 102 | 3.70 × 101 |
F23 | 4.62 × 102 | 3.93 × 102 | 3.52 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.94 × 102 | 3.44 × 102 | 4.53 × 102 | 3.75 × 102 | 3.44 × 102 | 3.44 × 102 | 4.02 × 102 | 3.44 × 102 |
F24 | 2.80 × 102 | 2.74 × 102 | 2.73 × 102 | 2.72 × 102 | 2.72 × 102 | 2.70 × 102 | 2.70 × 102 | 2.69 × 102 | 2.70 × 102 | 3.27 × 102 | 2.68 × 102 | 2.76 × 102 | 2.73 × 102 | 2.73 × 102 | 2.71 × 102 | 3.22 × 102 | 2.69 × 102 |
F25 | 2.22 × 102 | 2.15 × 102 | 2.09 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.36 × 102 | 2.05 × 102 | 2.20 × 102 | 2.13 × 102 | 2.05 × 102 | 2.05 × 102 | 2.47 × 102 | 2.05 × 102 |
F26 | 1.27 × 102 | 1.11 × 102 | 1.04 × 102 | 1.01 × 102 | 1.03 × 102 | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.62 × 102 | 1.00 × 102 | 1.33 × 102 | 1.17 × 102 | 1.05 × 102 | 1.05 × 102 | 1.85 × 102 | 1.00 × 102 |
F27 | 1.05 × 103 | 6.94 × 102 | 4.08 × 102 | 3.37 × 102 | 3.29 × 102 | 3.36 × 102 | 3.30 × 102 | 3.34 × 102 | 3.81 × 102 | 1.08 × 103 | 3.31 × 102 | 9.37 × 102 | 5.39 × 102 | 3.22 × 102 | 3.29 × 102 | 1.03 × 103 | 3.21 × 102 |
F28 | 2.40 × 103 | 1.73 × 103 | 1.51 × 103 | 1.16 × 103 | 1.17 × 103 | 1.18 × 103 | 1.21 × 103 | 1.23 × 103 | 1.28 × 103 | 1.47 × 103 | 1.18 × 103 | 2.34 × 103 | 1.47 × 103 | 1.16 × 103 | 1.25 × 103 | 1.51 × 103 | 1.14 × 103 |
F29 | 1.24 × 104 | 2.66 × 103 | 1.97 × 103 | 1.20 × 103 | 8.88 × 102 | 9.91 × 102 | 1.29 × 103 | 1.71 × 103 | 4.11 × 103 | 1.07 × 106 | 8.77 × 102 | 1.16 × 104 | 1.64 × 103 | 9.69 × 102 | 1.62 × 103 | 1.70 × 106 | 9.02 × 102 |
F30 | 1.68 × 105 | 3.69 × 104 | 1.66 × 104 | 1.06 × 104 | 9.03 × 103 | 8.77 × 103 | 9.08 × 103 | 9.47 × 103 | 9.29 × 103 | 3.70 × 104 | 8.60 × 103 | 2.36 × 105 | 2.54 × 104 | 9.83 × 103 | 8.95 × 103 | 5.48 × 104 | 8.51 × 103 |
Rank | 9.70 | 8.40 | 7.13 | 4.98 | 4.05 | 3.95 | 4.08 | 4.55 | 6.55 | 10.18 | 2.42 | 5.22 | 3.97 | 2.47 | 2.83 | 5.20 | 1.32 |
cs = 0.6 | ||||||||
---|---|---|---|---|---|---|---|---|
F | sr = 0.05 | sr = 0.10 | sr = 0.15 | sr = 0.20 | sr = 0.25 | sr = 0.30 | sr = 0.35 | Adaptive − sr |
F1 | 1.61 × 10−14 | 1.42 × 10−14 | 1.28 × 10−14 | 7.55 × 101 | 2.52 × 104 | 4.67 × 105 | 1.75 × 107 | 1.42 × 10−14 |
F2 | 2.91 × 10−12 | 1.08 × 10−12 | 9.56 × 10−13 | 2.02 × 100 | 1.65 × 107 | 2.91 × 109 | 1.20 × 1010 | 2.22 × 10−12 |
F3 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 2.28 × 100 | 1.93 × 103 | 8.44 × 103 | 0.00 × 100 |
F4 | 9.07 × 101 | 8.88 × 101 | 9.14 × 101 | 9.26 × 101 | 1.04 × 102 | 3.45 × 102 | 1.14 × 103 | 8.67 × 101 |
F5 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 |
F6 | 1.23 × 10−4 | 7.35 × 10−5 | 5.20 × 10−2 | 6.25 × 10−5 | 1.74 × 10−2 | 1.64 × 10−2 | 2.24 × 10−1 | 9.75 × 10−5 |
F7 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 6.22 × 10−1 | 3.07 × 101 | 1.13 × 102 | 0.00 × 100 |
F8 | 7.36 × 100 | 6.80 × 100 | 8.66 × 100 | 1.43 × 101 | 1.95 × 101 | 2.63 × 101 | 3.48 × 101 | 9.78 × 100 |
F9 | 6.20 × 100 | 4.91 × 100 | 6.10 × 100 | 7.16 × 100 | 1.20 × 101 | 1.71 × 101 | 2.40 × 101 | 6.70 × 100 |
F10 | 2.52 × 102 | 3.05 × 102 | 4.49 × 102 | 5.11 × 102 | 7.11 × 102 | 8.08 × 102 | 7.93 × 102 | 3.22 × 102 |
F11 | 2.30 × 102 | 3.36 × 102 | 4.32 × 102 | 4.96 × 102 | 5.80 × 102 | 7.30 × 102 | 6.84 × 102 | 3.57 × 102 |
F12 | 3.27 × 100 | 3.27 × 100 | 3.21 × 100 | 3.20 × 100 | 3.20 × 100 | 3.30 × 100 | 3.31 × 100 | 3.25 × 100 |
F13 | 1.39 × 10−1 | 1.55 × 10−1 | 1.60 × 10−1 | 1.57 × 10−1 | 1.53 × 10−1 | 2.45 × 10−1 | 8.50 × 10−1 | 1.51 × 10−1 |
F14 | 2.85 × 10−1 | 2.95 × 10−1 | 3.17 × 10−1 | 3.11 × 10−1 | 3.16 × 10−1 | 2.77 × 10−1 | 1.25 × 101 | 3.09 × 10−1 |
F15 | 4.82 × 100 | 4.78 × 100 | 4.77 × 100 | 5.04 × 100 | 5.07 × 100 | 5.10 × 100 | 8.61 × 100 | 4.77 × 100 |
F16 | 1.86 × 101 | 1.85 × 101 | 1.84 × 101 | 1.87 × 101 | 1.90 × 101 | 1.91 × 101 | 1.93 × 101 | 1.87 × 101 |
F17 | 1.80 × 102 | 1.75 × 102 | 1.62 × 102 | 1.97 × 102 | 1.70 × 102 | 2.37 × 102 | 2.28 × 102 | 1.44 × 102 |
F18 | 1.35 × 101 | 1.85 × 101 | 2.08 × 101 | 2.98 × 101 | 3.97 × 101 | 5.17 × 101 | 5.58 × 101 | 1.61 × 101 |
F19 | 1.17 × 101 | 1.15 × 101 | 1.22 × 101 | 1.33 × 101 | 2.17 × 101 | 2.81 × 101 | 2.23 × 101 | 1.17 × 101 |
F20 | 2.58 × 100 | 2.71 × 100 | 3.76 × 100 | 6.29 × 100 | 9.09 × 100 | 1.50 × 101 | 2.34 × 101 | 3.14 × 100 |
F21 | 2.29 × 102 | 2.11 × 102 | 2.28 × 102 | 2.47 × 102 | 2.72 × 102 | 3.10 × 102 | 3.15 × 102 | 1.98 × 102 |
F22 | 4.16 × 101 | 3.13 × 101 | 4.45 × 101 | 3.27 × 101 | 4.57 × 101 | 5.78 × 101 | 5.63 × 101 | 3.18 × 101 |
F23 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.50 × 102 | 3.64 × 102 | 3.80 × 102 | 3.44 × 102 |
F24 | 2.69 × 102 | 2.71 × 102 | 2.72 × 102 | 2.72 × 102 | 2.72 × 102 | 2.72 × 102 | 2.71 × 102 | 2.70 × 102 |
F25 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.08 × 102 | 2.10 × 102 | 2.12 × 102 | 2.05 × 102 |
F26 | 1.00 × 102 | 1.00 × 102 | 1.00 × 102 | 1.02 × 102 | 1.04 × 102 | 1.06 × 102 | 1.09 × 102 | 1.00 × 102 |
F27 | 3.33 × 102 | 3.23 × 102 | 3.11 × 102 | 3.12 × 102 | 3.17 × 102 | 4.09 × 102 | 5.12 × 102 | 3.13 × 102 |
F28 | 1.15 × 103 | 1.13 × 103 | 1.15 × 103 | 1.20 × 103 | 1.46 × 103 | 1.40 × 103 | 1.40 × 103 | 1.11 × 103 |
F29 | 8.43 × 102 | 8.32 × 102 | 8.30 × 102 | 1.07 × 103 | 1.50 × 103 | 1.40 × 103 | 1.34 × 103 | 8.24 × 102 |
F30 | 8.92 × 103 | 9.05 × 103 | 9.18 × 103 | 1.14 × 104 | 1.54 × 104 | 2.05 × 104 | 3.29 × 104 | 9.20 × 103 |
Rank | 2.98 | 2.70 | 3.25 | 4.53 | 5.80 | 6.67 | 7.43 | 2.63 |
F | ACSEDA | ACSEDA-O | ACSEDA-OP | ACSEDA-OA |
---|---|---|---|---|
F1 | 1.14 × 10−14 | 9.80 × 101 | 5.68 × 10−15 | 5.21 × 10−15 |
F2 | 7.40 × 10−2 | 6.04 × 102 | 1.04 × 10−13 | 8.62 × 10−13 |
F3 | 0.00 × 100 | 4.29 × 10−11 | 0.00 × 100 | 0.00 × 100 |
F4 | 9.25 × 101 | 9.59 × 101 | 9.12 × 101 | 9.68 × 101 |
F5 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 | 2.11 × 101 |
F6 | 1.74 × 10−2 | 4.15 × 10−3 | 1.74 × 10−2 | 3.47 × 10−2 |
F7 | 0.00 × 100 | 8.03 × 10−12 | 1.14 × 10−14 | 0.00 × 100 |
F8 | 2.98 × 100 | 4.84 × 100 | 3.13 × 102 | 5.14 × 101 |
F9 | 2.49 × 100 | 4.88 × 100 | 3.16 × 102 | 1.23 × 102 |
F10 | 1.07 × 102 | 4.99 × 101 | 1.22 × 104 | 6.17 × 103 |
F11 | 1.18 × 102 | 2.84 × 102 | 1.27 × 104 | 9.74 × 103 |
F12 | 3.35 × 100 | 3.19 × 100 | 3.23 × 100 | 3.20 × 100 |
F13 | 1.40 × 10−1 | 8.34 × 10−2 | 2.66 × 10−1 | 2.21 × 10−1 |
F14 | 2.40 × 10−1 | 2.91 × 10−1 | 2.28 × 10−1 | 2.35 × 10−1 |
F15 | 4.81 × 100 | 5.42 × 100 | 2.81 × 101 | 2.43 × 101 |
F16 | 1.80 × 101 | 1.88 × 101 | 2.15 × 101 | 1.96 × 101 |
F17 | 1.16 × 102 | 7.10 × 102 | 1.54 × 103 | 1.42 × 102 |
F18 | 8.47 × 100 | 7.40 × 101 | 9.10 × 101 | 1.15 × 101 |
F19 | 1.08 × 101 | 1.22 × 101 | 1.15 × 101 | 1.14 × 101 |
F20 | 1.95 × 100 | 1.54 × 101 | 6.69 × 101 | 4.34 × 100 |
F21 | 1.99 × 102 | 4.93 × 102 | 9.70 × 102 | 2.59 × 102 |
F22 | 3.54 × 101 | 8.56 × 101 | 9.26 × 102 | 5.28 × 101 |
F23 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 | 3.44 × 102 |
F24 | 2.68 × 102 | 2.72 × 102 | 2.68 × 102 | 2.67 × 102 |
F25 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 | 2.05 × 102 |
F26 | 1.00 × 102 | 1.01 × 102 | 1.00 × 102 | 1.00 × 102 |
F27 | 3.17 × 102 | 3.44 × 102 | 3.25 × 102 | 3.30 × 102 |
F28 | 1.16 × 103 | 1.36 × 103 | 1.14 × 103 | 1.19 × 103 |
F29 | 8.34 × 102 | 1.81 × 104 | 8.17 × 102 | 9.04 × 102 |
F30 | 8.57 × 103 | 1.07 × 104 | 8.60 × 103 | 8.74 × 103 |
Rank | 1.77 | 2.92 | 2.82 | 2.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Li, Y.; Gao, X.-D.; Ma, Y.-Y.; Lu, Z.-Y.; Jeon, S.-W.; Zhang, J. An Adaptive Covariance Scaling Estimation of Distribution Algorithm. Mathematics 2021, 9, 3207. https://doi.org/10.3390/math9243207
Yang Q, Li Y, Gao X-D, Ma Y-Y, Lu Z-Y, Jeon S-W, Zhang J. An Adaptive Covariance Scaling Estimation of Distribution Algorithm. Mathematics. 2021; 9(24):3207. https://doi.org/10.3390/math9243207
Chicago/Turabian StyleYang, Qiang, Yong Li, Xu-Dong Gao, Yuan-Yuan Ma, Zhen-Yu Lu, Sang-Woon Jeon, and Jun Zhang. 2021. "An Adaptive Covariance Scaling Estimation of Distribution Algorithm" Mathematics 9, no. 24: 3207. https://doi.org/10.3390/math9243207
APA StyleYang, Q., Li, Y., Gao, X.-D., Ma, Y.-Y., Lu, Z.-Y., Jeon, S.-W., & Zhang, J. (2021). An Adaptive Covariance Scaling Estimation of Distribution Algorithm. Mathematics, 9(24), 3207. https://doi.org/10.3390/math9243207