A New Flexible Family of Continuous Distributions: The Additive Odd-G Family
<p>The pdf plots of the AOLLOW-N distribution.</p> "> Figure 2
<p>The pdf and hrf plots of the AOLLOW-W distribution.</p> "> Figure 3
<p>The pdf and hrf plots of the AOLLOW-Ga distribution.</p> "> Figure 4
<p>The skewness and kurtosis plots for the selected AOLLOW-N distributions.</p> "> Figure 5
<p>The pdf plots of the LAOLLOW-W density.</p> "> Figure 6
<p>Simulation results of the AOLLOW-N distribution.</p> "> Figure 7
<p>TTT plots for stress data (<b>a</b>) and guinea pig data (<b>b</b>).</p> "> Figure 8
<p>The fitted plots for the first dataset.</p> "> Figure 9
<p>The fitted plots for the second dataset.</p> "> Figure 10
<p>The index (<b>a</b>) and qq (<b>b</b>) plots of the modified deviance residuals.</p> ">
Abstract
:1. Introduction
2. Special Members of the Family
2.1. The AOLLOW-Normal Distribution
2.2. The AOLLOW-Weibull Distribution
2.3. The AOLLOW-Gamma Distribution
3. Useful Expansions
4. Statistical Properties
4.1. Quantile Function
4.2. Moments
4.3. Generating Function
5. Inference
6. Regression Modeling
Residual Analysis
7. Simulation Studies
7.1. Simulation Study 1
7.2. Simulation Study 2
8. Data Analysis
- Akaike information criterion (AIC);
- Kolmogorov–Smirnov (KS);
- Cramer–von Mises ();
- Anderson–Darling ().
8.1. Stress Data
8.2. Guinea Pig Data
8.3. Stanford Heart Transplant Dataset
- ✓
- : year of acceptance to the program;
- ✓
- : age of the patient (years);
- ✓
- : previous surgery ;
- ✓
- : transplant .
Model Accuracy
9. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Kw-G | Kumaraswamy-G |
OW-G | odd Weibull-G |
OLL-G | odd log-logistic-G |
GOLL-G | generalized odd log-logistic-G |
GOLL2-G | another generalized odd log-logistic-G |
sf | survival function |
sd | standard deviation |
MSE | mean squared error |
cdf | cumulative distribution function |
probability density function | |
hrf | hazard rate function |
mgf | moment generating function |
AOLLOW-G | additive odd-log logistic odd Weibull-G |
qf | quantile function |
quantile-quantile | |
TTT | total time on test |
AIC | Akaike information criterion |
KS | Kolmogorov–Smirnov |
References
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat. Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Zografos, K.; Balakrishnan, N. On families of beta-and generalized gamma-generated distributions and associated inference. Stat. Methodol. 2009, 6, 344–362. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [Google Scholar] [CrossRef]
- Alexander, C.; Cordeiro, G.M.; Ortega, E.M.; Sarabia, J.M. Generalized beta-generated distributions. Comput. Stat. Data Anal. 2012, 56, 1880–1897. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, M.Ç.; Genç, A.I. A new generalized two-sided class of distributions with an emphasis on two-sided generalized normal distribution. Commun. Stat. Simul. Comput. 2017, 46, 1441–1460. [Google Scholar] [CrossRef]
- Gleaton, J.U.; Lynch, J.D. Properties of generalized log-logistic families of lifetime distributions. J. Probab. Stat. Sci. 2006, 4, 51–64. [Google Scholar]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar] [CrossRef]
- Alizadeh, M.; Cordeiro, G.M.; Nascimento, A.D.; Lima, M.D.C.S.; Ortega, E.M. Odd-Burr generalized family of distributions with some applications. J. Stat. Comput. Simul. 2017, 87, 367–389. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Alizadeh, M.; Ozel, G.; Hosseini, B.; Ortega, E.M.M.; Altun, E. The generalized odd log-logistic family of distributions: Properties, regression models and applications. J. Stat. Comput. Simul. 2017, 87, 908–932. [Google Scholar] [CrossRef]
- Haghbin, H.; Ozel, G.; Alizadeh, M.; Hamedani, G.G. A new generalized odd log-logistic family of distributions. Commun. Stat. Theory Methods 2017, 46, 9897–9920. [Google Scholar] [CrossRef]
- Alizadeh, M.; Afify, A.Z.; Eliwa, M.S.; Ali, S. The odd log-logistic Lindley-G family of distributions: Properties, Bayesian and non-Bayesian estimation with applications. Comput. Stat. 2020, 35, 281–308. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Eliwa, M.S.; Afify, A.Z. The odd Chen generator of distributions: Properties and estimation methods with applications in medicine and engineering. J. Natl. Sci. Found. Sri Lanka 2020, 48, 113–130. [Google Scholar]
- El-Morshedy, M.; Eliwa, M.S. The odd flexible Weibull-H family of distributions: Properties and estimation with applications to complete and upper record data. Filomat 2019, 33, 2635–2652. [Google Scholar] [CrossRef]
- Tahir, M.H.; Hussain, M.A.; Cordeiro, G.M.; El-Morshedy, M.; Eliwa, M.S. A new Kumaraswamy generalized family of distributions with properties, applications, and bivariate extension. Mathematics 2020, 8, 1989. [Google Scholar] [CrossRef]
- Xie, M.; Lai, C.D. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliabil. Eng. Syst. Saf. 1996, 52, 87–93. [Google Scholar] [CrossRef]
- Wang, F.K. A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliabil. Eng. Syst. Saf. 2000, 70, 305–312. [Google Scholar] [CrossRef]
- Sarhan, A.M.; Zaindin, M. Modified Weibull distribution. Appl. Sci. 2009, 11, 123–136. [Google Scholar]
- Almalki, S.J.; Yuan, J. A new modified Weibull distribution. Reliabil. Eng. Syst. Saf. 2013, 111, 164–170. [Google Scholar] [CrossRef]
- Oluyede, B.; Foya, S.; Warahena-Liyanage, G.; Huang, S. The log-logistic weibull distribution with applications to lifetime data. Aust. J. Stat. 2016, 45, 43–69. [Google Scholar] [CrossRef]
- He, B.; Cui, W.; Du, X. An additive modified Weibull distribution. Reliabil. Eng. Syst. Saf. 2016, 145, 28–37. [Google Scholar] [CrossRef]
- Kyurkchiev, N. Comments on the epsilon and omega cumulative distributions: “Saturation in the hausdorff sense”. AIP Conf. Proc. 2021, 2321, 030020-1–030020-8. [Google Scholar]
- Kyurkchiev, N.; Markov, S. On the Hausdorff distance between the Heaviside step function and Verhulst logistic function. J. Math. Chem. 2016, 54, 109–119. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. The exponentiated-type distributions. Acta Appl. Math. 2006, 92, 97–111. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Nadarajah, S. Closed-form expressions for moments of a class of beta generalized distributions. Braz. J. Probab. Stat. 2011, 25, 14–33. [Google Scholar] [CrossRef]
- Fleming, T.R.; Harrington, D.P. Counting Process and Survival Analysis; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Therneau, T.M.; Grambsch, P.M.; Fleming, T.R. Martingale-based residuals for survival models. Biometrika 1990, 77, 147–160. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Cordeiro, G.M.; Ortega, E.M. On the additive Weibull distribution. Commun. Stat. Theory Methods 2014, 43, 2066–2080. [Google Scholar] [CrossRef]
- Chen, G.; Balakrishnan, N. A general purpose approximate goodness-of-fit test. J. Qual. Technol. 1995, 27, 154–161. [Google Scholar] [CrossRef]
- Aarset, M.V. How to identify a bathtub hazard rate. IEEE Trans. Reliabil. 1987, 36, 106–108. [Google Scholar] [CrossRef]
- Andrews, D.F.; Herzberg, A.M. Data: A Collection of Problems from Many Fields for the Student and Research Worker; Springer: New York, NY, USA, 1985. [Google Scholar]
- Cooray, K.; Ananda, M.M. A generalization of the half-normal distribution with applications to lifetime data. Commun. Stat. Theory Methods 2008, 37, 1323–1337. [Google Scholar] [CrossRef]
- Paranaiba, P.F.; Ortega, E.M.; Cordeiro, G.M.; Pascoa, M.A.D. The Kumaraswamy Burr XII distribution: Theory and practice. J. Stat. Comput. Simul. 2013, 83, 2117–2143. [Google Scholar] [CrossRef]
- Bjerkedal, T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am. J. Hyg. 1960, 72, 130–148. [Google Scholar] [PubMed]
- Gupta, R.C.; Kannan, N.; Raychaudhuri, A. Analysis of lognormal survival data. Math. Biosci. 1997, 139, 103–115. [Google Scholar] [CrossRef]
- Korkmaz, M.Ç.; Genç, A.I. Two-Sided Generalized Exponential Distribution. Commun. Stat. Theory Methods 2015, 44, 5049–5070. [Google Scholar] [CrossRef]
- Korkmaz, M.Ç. A generalized skew slash distribution via gamma-normal distribution. Commun. Stat. Simul. Comput. 2017, 46, 1647–1660. [Google Scholar] [CrossRef]
- Brito, E.; Cordeiro, G.M.; Yousof, H.M.; Alizadeh, M.; Silva, G.O. The Topp Leone odd log-logistic family of distributions. J. Stat. Comput. Simul. 2017, 87, 3040–3058. [Google Scholar] [CrossRef]
Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5, 2, 0.5, 2 | 0.5327 | 2.0754 | 0.5156 | 2.1858 | 0.5076 | 2.0187 | 0.5060 | 2.0686 | 0.5067 | 2.0205 | 0.5022 | 2.0351 |
(0.2003) | (0.4328) | (0.0359) | (0.3527) | (0.0982) | (0.2422) | (0.0174) | (0.2160) | (0.0717) | (0.1615) | (0.0125) | (0.1509) | |
1, 0.5, 0.5, 2 | 1.0407 | 0.5491 | 0.5232 | 2.5367 | 1.0167 | 0.5465 | 0.5040 | 2.1541 | 1.0018 | 0.5399 | 0.5016 | 2.1123 |
(0.6327) | (0.2974) | (0.0848) | (0.7923) | (0.4233) | (0.1849) | (0.0428) | (0.5598) | (0.3554) | (0.1624) | (0.0330) | (0.4873) | |
5, 5, 0.5, 0.5 | 4.9099 | 5.0724 | 0.5266 | 0.5407 | 4.8526 | 5.0990 | 0.5177 | 0.5245 | 4.9784 | 5.0163 | 0.5074 | 0.5098 |
(0.3564) | (0.2439) | (0.0797) | (0.1098) | (0.5727) | (0.4224) | (0.0490) | (0.0624) | (0.1569) | (0.1126) | (0.0343) | (0.0419) | |
2, 2, 2, 2 | 1.8851 | 2.3515 | 2.0364 | 2.2521 | 1.9740 | 2.1548 | 2.0125 | 2.0790 | 1.9996 | 2.0880 | 2.0051 | 2.0457 |
(0.7248) | (0.5187) | (0.1201) | (0.5273) | (0.5768) | (0.3070) | (0.0661) | (0.2762) | (0.5067) | (0.0661) | (0.0547) | (0.2370) | |
1, 2, 3, 4 | 1.1058 | 2.1757 | 3.0427 | 4.3521 | 1.0355 | 2.0483 | 3.0127 | 4.1308 | 1.0216 | 2.0211 | 3.0075 | 4.0867 |
(0.4546) | (0.7245) | (0.0893) | (0.5841) | (0.2447) | (0.3964) | (0.0516) | (0.3320) | (0.2018) | (0.3024) | (0.0407) | (0.2894) | |
4, 3, 2, 1 | 3.8858 | 3.0293 | 2.1136 | 1.2596 | 3.9176 | 3.0012 | 2.0539 | 1.1167 | 3.9575 | 2.9717 | 2.0368 | 1.0697 |
(0.7970) | (0.9388) | (0.2442) | (0.5369) | (0.6317) | (0.7288) | (0.1538) | (0.2735) | (0.4844) | (0.5696) | (0.1172) | (0.1893) |
Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
AOLLOW-W | 43.5199 | 10.9591 | 0.0002 | 0.04619 | 99.9641 | 207.9282 | 0.0505 | 0.3790 | 0.0460 |
(10.6311) | (1.6396) | (0.00001) | (0.0017) | ||||||
AW | 0.6703 | 0.7893 | 0.3139 | 1.2451 | 102.8146 | 213.6292 | 0.0826 | 0.9372 | 0.1601 |
(0.7347) | (0.2712) | (0.7209) | (0.5576) | ||||||
GOLL2-W | 0.8891 | 0.6399 | 1.6166 | 1.0111 | 102.8434 | 213.6869 | 0.0902 | 1.0140 | 0.1814 |
(0.1949) | (0.1222) | (0.2645) | (0.1777) | ||||||
GOLL-W | 1.1712 | 0.6062 | 0.6131 | 1.1123 | 102.7667 | 213.5335 | 0.0798 | 0.9348 | 0.1561 |
(0.9348) | (0.8847) | (0.9732) | (0.4377) | ||||||
Kw-W | 0.7197 | 0.2429 | 3.5048 | 1.0362 | 102.6217 | 213.2433 | 0.0752 | 0.8432 | 0.1376 |
(0.0053) | (0.0245) | (0.0041) | (0.0106) | ||||||
OLL-W | 0.8892 | 1.0396 | 1.0109 | 102.8435 | 211.6869 | 0.0903 | 1.0145 | 0.1816 | |
(0.1944) | (0.1286) | (0.1771) | |||||||
OW-W | 6.2492 | 0.0330 | 0.1077 | 102.8714 | 211.7428 | 0.0847 | 0.9778 | 0.1686 | |
(13.8005) | (0.2478) | (0.2391) | |||||||
W | 1.0101 | 0.9260 | 102.9768 | 209.9536 | 0.0906 | 1.1220 | 0.1963 | ||
(0.1141) | (0.0726) |
Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
AOLLOW-Ga | 0.0598 | 0.0371 | 0.4412 | 74.2805 | 386.5875 | 781.1751 | 0.0883 | 0.5483 | 0.1003 |
(0.0163) | (0.0057) | () | (1.1 × 10−9) | ||||||
GOLL2-Ga | 4.5123 | 3.4472 | 3.5404 | 391.0022 | 790.0043 | 0.0897 | 0.9138 | 0.1411 | |
(1.3647) | (2.5399) | () | (0.1279) | ||||||
GOLL-Ga | 12.2028 | 0.0621 | 1.6275 | 390.5474 | 789.0948 | 0.0906 | 0.7493 | 0.1254 | |
(1.1728) | (0.0403) | (0.0001) | (0.9773) | ||||||
Kw-Ga | 287.2096 | 0.3796 | 0.0306 | 0.0206 | 390.3771 | 788.7543 | 0.0986 | 0.9409 | 0.1761 |
(0.4384) | (0.1826) | (0.0140) | (0.0099) | ||||||
OLL-Ga | 10.3182 | 0.1202 | 390.6752 | 787.3503 | 0.0888 | 0.8285 | 0.1285 | ||
(0.7899) | (0.0001) | (0.1771) | |||||||
OW-Ga | 0.0465 | 0.3925 | 61.1120 | 394.4674 | 794.9348 | 0.2276 | 5.2988 | 1.1630 | |
(0.0042) | (0.0001) | (0.1688) | |||||||
Ga | 0.0208 | 2.0810 | 394.2476 | 792.4952 | 0.1385 | 1.8960 | 0.3555 | ||
(0.0037) | (0.3232) |
Models | |||||||||
---|---|---|---|---|---|---|---|---|---|
Log-Weibull | Log-TLOLL-W | LAOLLOW-W | |||||||
Parameters | Estimate | S.E. | p-Value | Estimate | S.E. | p-Value | Estimate | S.E. | p-Value |
- | - | - | 2.340 | 3.546 | - | 5.244 | 4.840 | - | |
- | - | - | 24.029 | 3.015 | - | 4.986 | 5.745 | - | |
1.478 | 0.133 | - | 9.680 | 12.526 | - | 8.270 | 8.640 | - | |
1.639 | 6.835 | 0.811 | −0.645 | 8.459 | 0.939 | 6.689 | 3.199 | 0.036 | |
0.104 | 0.096 | 0.279 | 0.074 | 0.097 | 0.448 | 0.236 | 0.086 | 0.006 | |
−0.092 | 0.02 | <0.001 | −0.053 | 0.02 | 0.009 | −0.079 | 0.018 | <0.001 | |
1.126 | 0.658 | 0.087 | 1.676 | 0.597 | 0.005 | −0.082 | 0.470 | 0.861 | |
2.544 | 0.378 | <0.001 | 2.394 | 0.384 | <0.001 | 0.263 | 0.355 | 0.458 | |
171.2405 | 164.684 | 161.911 | |||||||
AIC | 354.481 | 345.368 | 339.822 | ||||||
BIC | 370.2894 | 366.4458 | 360.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altun, E.; Korkmaz, M.Ç.; El-Morshedy, M.; Eliwa, M.S. A New Flexible Family of Continuous Distributions: The Additive Odd-G Family. Mathematics 2021, 9, 1837. https://doi.org/10.3390/math9161837
Altun E, Korkmaz MÇ, El-Morshedy M, Eliwa MS. A New Flexible Family of Continuous Distributions: The Additive Odd-G Family. Mathematics. 2021; 9(16):1837. https://doi.org/10.3390/math9161837
Chicago/Turabian StyleAltun, Emrah, Mustafa Ç. Korkmaz, Mahmoud El-Morshedy, and Mohamed S. Eliwa. 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family" Mathematics 9, no. 16: 1837. https://doi.org/10.3390/math9161837
APA StyleAltun, E., Korkmaz, M. Ç., El-Morshedy, M., & Eliwa, M. S. (2021). A New Flexible Family of Continuous Distributions: The Additive Odd-G Family. Mathematics, 9(16), 1837. https://doi.org/10.3390/math9161837