Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization
<p>Optimization process of EO.</p> "> Figure 2
<p>The proposed steps incorporating EO.</p> "> Figure 3
<p>The measured and calculated polarization curves of SOFC operated at 1073 K obtained via EO at (<b>a</b>) current density-voltage, (<b>b</b>) current density-power.</p> "> Figure 4
<p>(<b>a</b>) Current-voltage curve, (<b>b</b>) Current-power curve of SOFC operated at 1073 K obtained via other approaches.</p> "> Figure 5
<p>The variation of fitness function during iterative process for all employed optimizers applied for steady-state SOFC model.</p> "> Figure 6
<p>The measured and calculated (<b>a</b>) current density-voltage, (<b>b</b>) current density-power of SOFC operated at 1173 K, 1213 K, and 1273 K obtained via the proposed EO.</p> "> Figure 7
<p>The measured and calculated polarization curves of SOFC dynamic-state model operated at 1273 K obtained via EO (<b>a</b>) current-voltage, (<b>b</b>) current-power.</p> "> Figure 8
<p>The measured and calculated polarization curves of SOFC dynamic-state model operated at 1273 K obtained via MPA, HBO, SOA, and MRFO.</p> "> Figure 9
<p>The variation of fitness function during iterative process for all employed optimizers applied for dynamic-state SOFC model.</p> "> Figure 10
<p>First load disturbance applied on SOFC stack dynamic model.</p> "> Figure 11
<p>Second load disturbance applied on SOFC stack dynamic model.</p> ">
Abstract
:1. Introduction
- A novel approach based on Equilibrium Optimizer (EO) is suggested to determine the optimal parameters of the SOFC-based model.
- The suggested methodology is validated through both steady-state and dynamic-state models of SOFC with the changing of the operational conditions.
- A comprehensive comparison with previous works and other programs of the Archimedes optimization algorithm (AOA), Heap-based optimizer (HBO), Seagull Optimization Algorithm (SOA), Student Psychology Based Optimization Algorithm (SPBO), Marine predator algorithm (MPA), and Manta ray foraging optimization (MRFO).
- The superiority and reliability of the suggested EO-based strategy in solving the SOFC parameter determination problem is verified.
2. SOFC Mathematical Model
2.1. Steady-State Model
2.2. SOFC Dynamic Model
3. Overview of Equilibrium Optimizer
4. The Proposed Methodology
4.1. The Proposed Objective Function
4.2. The Proposed EO Based Methodology
5. Numerical Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Capodaglio, A.G.; Cecconet, D.; Molognoni, D. An integrated mathematical model of microbial fuel cell processes: Bioelectrochemical and microbiologic aspects. Processes 2017, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Bizon, N.; Thounthong, P. Energy efficiency and fuel economy of a fuel cell/renewable energy sources hybrid power system with the load-following control of the fueling regulators. Mathematics 2020, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Olabi, A.G. Developments of electric cars and fuel cell hydrogen electric cars. Int. J. Hydrogen Energy 2017, 42, 25695–25734. [Google Scholar] [CrossRef] [Green Version]
- El-Hay, E.A.; El-Hameed, M.A.; El-Fergany, A.A. Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor. Energy 2018, 163, 699–711. [Google Scholar] [CrossRef]
- Rokni, M. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels. Energy 2017, 137, 1013–1025. [Google Scholar] [CrossRef] [Green Version]
- Olabi, A. Renewable energy and energy storage systems. Energy 2017, 136, 1–6. [Google Scholar] [CrossRef]
- Ramadhani, F.; Hussain, M.; Mokhlis, H.; Hajimolana, S. Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renew. Sustain. Energy Rev. 2017, 76, 460–484. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chowdhury, S.P.; Crossley, P. Microgrids and Active Distribution Networks; The Institution of Engineering and Technology: London, UK, 2009. [Google Scholar]
- El-Hay, E.; El-Hameed, M.; El-Fergany, A. Steady-state and dynamic models of solid oxide fuel cells based on Satin Bowerbird Optimizer. Int. J. Hydrogen Energy 2018, 43, 14751–14761. [Google Scholar] [CrossRef]
- El-Hay, E.; El-Hameed, M.; El-Fergany, A. Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm. Energy 2019, 166, 451–461. [Google Scholar] [CrossRef]
- Van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments. Appl. Energy 2019, 250, 976–990. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.; Hu, C.; Wang, L.; Gao, L. Fast and accurate parameter extraction for different types of fuel cells with decomposition and nature-inspired optimization method. Energy Convers. Manag. 2018, 174, 913–921. [Google Scholar] [CrossRef]
- Ettihir, K.; Boulon, L.; Becherif, M.; Agbossou, K.; Ramadan, H. Online identification of semi-empirical model parameters for PEMFCs. Int. J. Hydrogen Energy 2014, 39, 21165–21176. [Google Scholar] [CrossRef]
- Ang, S.M.C.; Brett, D.J.; Fraga, E.S. A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system. J. Power Sources 2010, 195, 2754–2763. [Google Scholar] [CrossRef] [Green Version]
- Tahmasbi, A.A.; Hoseini, A.; Roshandel, R. A new approach to multi-objective optimisation method in PEM fuel cell. Int. J. Sustain. Energy 2013, 34, 283–297. [Google Scholar] [CrossRef]
- Petrescu, S.; Petre, C.; Costea, M.; Malancioiu, O.; Boriaru, N.; Dobrovicescu, A.; Feidt, M.; Harman, C.; Stanciu, C. A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells. Energy 2010, 35, 729–739. [Google Scholar] [CrossRef]
- Virkar, A.; Williams, M.C.; Singhal, S. Concepts for ultra-high power density solid oxide fuel cells. ECS Trans. 2007, 5, 401–421. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, L.; Virkar, A.V. A parametric model for solid oxide fuel cells based on measurements made on cell materials and components. J. Power Sources 2015, 291, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, J.; Zafetti, N. New optimized technique for unknown parameters selection of SOFC using Converged Grass Fibrous Root Optimization Algorithm. Energy Rep. 2020, 6, 1428–1437. [Google Scholar] [CrossRef]
- Yousri, D.; Hasanien, H.M.; Fathy, A. Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm. Energy Convers. Manag. 2021, 228, 113692. [Google Scholar] [CrossRef]
- Nassef, A.M.; Fathy, A.; Sayed, E.T.; Abdelkareem, M.A.; Rezk, H.; Tanveer, W.H.; Olabi, A. Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms. Renew. Energy 2019, 138, 458–464. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H.; Ramadan, H.S.M. Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process. Energy 2020, 207, 118326. [Google Scholar] [CrossRef]
- Wang, X.; Huang, B.; Chen, T. Data-driven predictive control for solid oxide fuel cells. J. Process. Control 2007, 17, 103–114. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A.; McDonald, M.S. Fuel Cell Systems Explained; John Wiley & Sons: Chichester, UK, 2003; Volume 2. [Google Scholar]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Wei, Z.; Zou, C.; Leng, F.; Soong, B.H.; Tseng, K.-J. Online model identification and state-of-charge estimate for lithium-ion battery with a recursive total least squares-based observer. IEEE Trans. Ind. Electron. 2018, 65, 1336–1346. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, J.; Xiong, R.; Dong, G.; Pou, J.; Tseng, K.J. Online estimation of power capacity with noise effect attenuation for lithium-ion battery. IEEE Trans. Ind. Electron. 2019, 66, 5724–5735. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, D.; He, H.; Cao, W.; Dong, G. A noise-tolerant model parameterization method for lithium-ion battery management system. Appl. Energy 2020, 268, 114932. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, S.; Xiong, B.; Ji, D.; Tseng, K.J. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer. Appl. Energy 2016, 181, 332–341. [Google Scholar] [CrossRef]
- Pierre, J. Siemens energy. In Proceedings of the 11th Annual SECA Workshop, Pittsburgh, PA, USA, 27–29 July 2010. [Google Scholar]
- Xu, D.; Jiang, B.; Liu, F. Improved data driven model free adaptive constrained control for a solid oxide fuel cell. IET Control. Theory Appl. 2016, 10, 1412–1419. [Google Scholar] [CrossRef]
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
---|---|---|---|---|---|---|
E0 (V) | 0.90754 | 0.9127 | 0.91214 | 0.91101 | 0.91827 | 0.91056 |
a (V) | 0.010741 | 0.011058 | 0.010929 | 0.020502 | 0.0116 | 0.010724 |
Jo (A/cm2) | 0.098627 | 0.059994 | 0.063321 | 0.048127 | 0.035918 | 0.074522 |
r (kΩ∙cm2) | 1.0 | 1.0 | 1.0 | 1.0 | 0.99919 | 1.0 |
b (V) | 0.044104 | 0.042784 | 0.043502 | 0.0 | 0.036886 | 0.044165 |
Jmax (A/cm2) | 1.0 | 1.0 | 1.0 | 0.64297 | 0.9183 | 1.0 |
Elapsed time (sec.) | NA | 468.526 | 403.607 | 278.254 | 560.753 | 272.198102 |
SMSE | 2.6906 × 10−6 | 2.692 × 10−6 | 2.7003 × 10−6 | 4.123 × 10−6 | 2.7213 × 10−6 | 2.6906 × 10−6 |
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
---|---|---|---|---|---|---|
E0 (V) | 0.89103 | 0.89129 | 0.89083 | 0.87956 | 0.89087 | 0.89108 |
a (V) | 3.671 × 10−13 | 6.1748 × 10−13 | 3.23334 × 10−13 | 0.0077567 | 9.8137 × 10−6 | 3.14568 × 10−8 |
Jo (A/cm2) | 0.095127 | 0.018358 | 0.041194 | 0.087363 | 0.068684 | 0.09998 |
r (kΩ∙cm2) | 0.40473 | 0.41593 | 0.39952 | 0.21139 | 0.4027 | 0.40610 |
b (V) | 0.18841 | 0.17741 | 0.19212 | 0.28497 | 0.18885 | 0.18741 |
Jmax (A/cm2) | 1.0 | 0.98862 | 1.0 | 0.9465 | 0.9968 | 0.99999 |
Elapsed time (sec.) | NA | 495.653992 | 396.181972 | 303.170716 | 612.841366 | 303.185040 |
SMSE | 1.5529 × 10−6 | 1.5594 × 10−6 | 1.5557 × 10−6 | 3.1657 × 10−6 | 1.5563 × 10−6 | 1.5527 × 10−6 |
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
---|---|---|---|---|---|---|
E0 (V) | 0.86169 | 0.86189 | 0.86134 | 0.85622 | 0.86176 | 0.86164 |
a (V) | 5.0588 × 10−13 | 4.2805 × 10−28 | 3.4456 × 10−30 | 3.1223 × 10−29 | 3.3451 × 10−5 | 7.12575 × 10−8 |
Jo (A/cm2) | 0.08871 | 0.054568 | 0.011975 | 0.047885 | 0.063468 | 0.07768 |
r (kΩ∙cm2) | 0.15982 | 0.16633 | 0.14858 | 0.000124 | 0.16629 | 0.15873 |
b (V) | 0.28529 | 0.28032 | 0.29351 | 0.4012 | 0.27918 | 0.28603 |
Jmax (A/cm2) | 1.0 | 0.99946 | 1.0 | 1.0 | 0.99732 | 0.99999 |
Elapsed time (sec.) | NA | 464.968854 | 367.890819 | 236.154633 | 571.548052 | 273.530 |
SMSE | 2.6811 × 10−6 | 2.6846 × 10−6 | 2.6887 × 10−6 | 4.3804 × 10−6 | 2.6896 × 10−6 | 2.6809 × 10−6 |
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
---|---|---|---|---|---|---|
E0 (V) | 0.8478 | 0.84782 | 0.84802 | 0.84014 | 0.84802 | 0.8478 |
a (V) | 2.887 × 10−14 | 3.128 × 10−21 | 5.1251 × 10−6 | 2.238 × 10−20 | 3.2243 × 10−5 | 6.7797 × 10−12 |
Jo (A/cm2) | 0.061816 | 0.014523 | 0.086283 | 0.017285 | 0.024437 | 0.0160 |
r (kΩ∙cm2) | 0.21564 | 0.21634 | 0.22323 | 0.1563 | 0.22021 | 0.2169 |
b (V) | 0.20575 | 0.20524 | 0.20009 | 0.36046 | 0.20226 | 0.2047 |
Jmax (A/cm2) | 1.0 | 1.0 | 0.99984 | 1.00 | 0.99888 | 1.0 |
Elapsed time (sec.) | NA | 465.757529 | 352.634515 | 199.242260 | 555.636660 | 317.980527 |
SMSE | 2.2997 × 10−6 | 2.2996 × 10−6 | 2.3031 × 10−6 | 5.4888 × 10−6 | 2.3058 × 10−6 | 2.2995 × 10−6 |
At T = 1073 K | ||||||
---|---|---|---|---|---|---|
Cldmmpa [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
Best | 2.6906 × 10−6 | 2.69203 × 10−6 | 2.70035 × 10−6 | 4.12297 × 10−6 | 2.7213 × 10−6 | 2.6906 × 10−6 |
Worst | 2.696 × 10−6 | 1.23064 × 10−5 | 4.49932 × 10−6 | 0.00034 | 4.8504 × 10−6 | 6.8151 × 10−6 |
Mean | 2.6926 × 10−6 | 4.75170 × 10−6 | 3.11043 × 10−6 | 9.38355 × 10−5 | 3.1121 × 10−6 | 3.3645 × 10−6 |
Median | 2.6917 × 10−6 | 3.61749 × 10−6 | 2.96160 × 10−6 | 9.33996 × 10−5 | 2.9395 × 10−6 | 2.6906 × 10−6 |
Variance | 4.1347 × 10−18 | 6.38059 × 10−12 | 1.75759 × 10−13 | 9.20085 × 10−9 | 2.2231 × 10−13 | 8.38802 × 10−13 |
Std. deviation | 2.0334 × 10−9 | 2.52598 × 10−6 | 4.19236 × 10−7 | 9.59210 × 10−5 | 4.7150 × 10−7 | 9.15673 × 10−7 |
At T = 1173 K | ||||||
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The proposed EO | |
Best | 1.5529 × 10−6 | 1.5594 × 10−6 | 1.5556 × 10−6 | 3.1656 × 10−6 | 1.5563 × 10−6 | 1.55279 × 10−6 |
Worst | 1.5752 × 10−6 | 5.9028 × 10−6 | 2.1420 × 10−6 | 0.01102 | 2.6603 × 10−6 | 6.00407 × 10−6 |
Mean | 1.5593 × 10−6 | 3.0125 × 10−6 | 1.6979 × 10−6 | 0.00026 | 1.7105 × 10−6 | 2.31364 × 10−6 |
Median | 1.5572 × 10−6 | 2.4861 × 10−6 | 1.6532 × 10−6 | 1.26093 × 10−5 | 1.6493 × 10−6 | 1.58630 × 10−6 |
Variance | 3.8987 × 10−17 | 1.9116 × 10−12 | 1.8382 × 10−14 | 2.42265 × 10−6 | 3.7587 × 10−14 | 2.66121 × 10−12 |
Std. deviation | 6.244× 10−9 | 1.3826 × 10−6 | 1.3558 × 10−7 | 0.00155 | 1.9387 × 10−7 | 1.63132 × 10−6 |
At T = 1213 K | ||||||
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The proposed EO | |
Best | 2.6811 × 10−6 | 2.6846 × 10−6 | 2.6887 × 10−6 | 4.3804 × 10−6 | 2.68961 × 10−6 | 2.68099 × 10−6 |
Worst | 2.7269 × 10−6 | 1.2325 × 10−5 | 3.4295 × 10−6 | 0.00032 | 3.22001 × 10−6 | 1.30287 × 10−5 |
Mean | 2.6921 × 10−6 | 4.6204 × 10−6 | 2.8357 × 10−6 | 2.37574 × 10−5 | 2.85206 × 10−6 | 4.02438 × 10−6 |
Median | 2.6867 × 10−6 | 3.3119 × 10−6 | 2.7703 × 10−6 | 1.31251 × 10−5 | 2.81486 × 10−6 | 2.78147 × 10−6 |
Variance | 1.9891 × 10−16 | 9.4614 × 10−12 | 2.7256 × 10−14 | 3.77968 × 10−9 | 1.72574 × 10−14 | 1.12951 × 10−11 |
Std. deviation | 1.4103 × 10−8 | 3.0759 × 10−6 | 1.6509 × 10−7 | 6.14791 × 10−5 | 1.3136 × 10−7 | 3.36081 × 10−6 |
At T = 1273 K | ||||||
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The proposed EO | |
Best | 2.2997 × 10−6 | 2.2995 × 10−6 | 2.30310 × 10−6 | 5.4888 × 10−6 | 2.30579 × 10−6 | 2.2995 × 10−6 |
Worst | 2.3392 × 10−6 | 7.4728 × 10−6 | 3.0608 × 10−6 | 0.000247 | 2.84248 × 10−6 | 7.6115 × 10−6 |
Mean | 2.3156 × 10−6 | 3.6859 × 10−6 | 2.4184 × 10−6 | 1.758508 × 10−5 | 2.40213 × 10−6 | 3.4890 × 10−6 |
Median | 2.3141 × 10−6 | 3.1707 × 10−6 | 2.3647 × 10−6 | 7.71186 × 10−6 | 2.37664 × 10−6 | 2.3085 × 10−6 |
Variance | 1.3448 × 10−16 | 2.1494 × 10−12 | 1.9816 × 10−14 | 2.25858 × 10−9 | 8.64055 × 10−15 | 4.8928 × 10−12 |
Std. deviation | 1.1597 × 10−8 | 1.466 × 10−6 | 1.4077 × 10−7 | 4.7524 × 10−5 | 9.29545 × 10−8 | 2.2119 × 10−6 |
Parameter | Value |
---|---|
Prated (W) | 100 kW |
nc | 384 |
E0 (V) | 1.18 |
T (K) | 1273 |
KH2 (kmol/s/atm) | 8.43 × 10−4 |
KO2 (kmol/s/atm) | 2.52 × 10−3 |
KH2O (kmol/s/atm) | 2.81 × 10−4 |
rH-O | 1.145 |
τH2 (s) | 26.1 |
τO2 (s) | 2.91 |
τH2O (s) | 78.3 |
Te (s) | 0.8 |
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
---|---|---|---|---|---|---|
E0 (V) | 1.1405 | 1.199847 | 1.194939 | 0.89461271 | 1.113337 | 1.144398 |
a (V) | 0.037449 | 0.04882335 | 0.04756176 | 0.000 | 0.02729001 | 0.02982692 |
Jo (A/cm2) | 0.095442 | 0.09987029 | 0.0939504 | 0.090655585 | 0.03143729 | 0.0202932 |
r (kΩ∙cm2) | 0.0001829 | 4.3684 × 10−5 | 4.873756 × 10−5 | 0.000 | 0.0002672047 | 0.0002547476 |
b (V) | 0.10386 | 0.1551425 | 0.1515045 | 0.32672895 | 0.08200661 | 0.08350225 |
Jmax (A/cm2) | 0.8367 | 865.6602 | 859.6317 | 1000 | 825.4696 | 825.7578 |
Elapsed time (sec.) | NA | 433.946266 | 331.304354 | 222.830499 | 593.725886 | 327.35802 |
SMSE | 1.3204 | 3.0887 | 3.3486 | 34.1692 | 1.0775 | 1.0406 |
CLDMMPA [20] | MPA | HBO | SOA | MRFO | The Proposed EO | |
---|---|---|---|---|---|---|
Best | 1.3204 | 3.08867 | 3.3486 | 34.1692 | 1.0775 | 1.04061 |
Worst | 3.9835 | 25.1135 | 10.473 | 5401.8725 | 3.4164 | 2.00140 |
Mean | 3.2462 | 8.54964 | 5.6209 | 1025.8099 | 1.7115 | 1.1352 |
Median | 3.5241 | 6.07593 | 4.8835 | 34.3473 | 4.5141 | 1.0816 |
Variance | 0.51027 | 36.3547 | 2.7528 | 3,915,661.957 | 0.23360 | 0.02264 |
Std. deviation | 0.71434 | 6.02948 | 1.6592 | 1978.803 | 0.15284 | 0.15048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhumade, H.; Fathy, A.; Al-Zahrani, A.; Rawa, M.J.; Rezk, H. Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization. Mathematics 2021, 9, 1066. https://doi.org/10.3390/math9091066
Alhumade H, Fathy A, Al-Zahrani A, Rawa MJ, Rezk H. Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization. Mathematics. 2021; 9(9):1066. https://doi.org/10.3390/math9091066
Chicago/Turabian StyleAlhumade, Hesham, Ahmed Fathy, Abdulrahim Al-Zahrani, Muhyaddin Jamal Rawa, and Hegazy Rezk. 2021. "Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization" Mathematics 9, no. 9: 1066. https://doi.org/10.3390/math9091066
APA StyleAlhumade, H., Fathy, A., Al-Zahrani, A., Rawa, M. J., & Rezk, H. (2021). Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization. Mathematics, 9(9), 1066. https://doi.org/10.3390/math9091066