Theoretical Identification of Coupling Effect and Performance Analysis of Single-Source Direct Sampling Method
<p>Illustration of the simulation configuration.</p> "> Figure 2
<p>Maps of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSM</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSE</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.925</mn> <mrow> <mi mathvariant="normal">G</mi> <mi>Hz</mi> </mrow> </mrow> </semantics></math>. White-colored dashed line describes the <math display="inline"><semantics> <mrow> <mo>∂</mo> <mi mathvariant="script">D</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Maps of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSM</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSE</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1.245</mn> <mrow> <mi mathvariant="normal">G</mi> <mi>Hz</mi> </mrow> </mrow> </semantics></math>. White-colored dashed line describes the <math display="inline"><semantics> <mrow> <mo>∂</mo> <mi mathvariant="script">D</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>Maps of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSM</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSE</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.750</mn> <mrow> <mi mathvariant="normal">G</mi> <mi>Hz</mi> </mrow> </mrow> </semantics></math>. White-colored dashed line describes the <math display="inline"><semantics> <mrow> <mo>∂</mo> <mi mathvariant="script">D</mi> </mrow> </semantics></math>.</p> "> Figure 5
<p>Multi-frequency imaging of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSM</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">F</mi> <mo form="prefix">DSE</mo> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold">r</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. White-colored dashed line describes the <math display="inline"><semantics> <mrow> <mo>∂</mo> <mi mathvariant="script">D</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Scattering Parameter and Indicator Functions of Direct Sampling Method
3. Theoretical Results and Related Discussion
- ①
- the material properties of the anomaly and the antennas due to the factors and ;
- ②
- the antenna configuration such as total number (factors N and ) and arrangement (factors and );
- ③
- the applied frequency (factors k and ω); and
- ④
- the location of the transmitter and the distance between the transmitter and the anomaly due to the factors of .
4. Simulation Results and Discussion
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Problems; Mathematics and Applications Series; Springer: New York, NY, USA, 1998. [Google Scholar]
- Ammari, H. Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 2011; Volume 2035. [Google Scholar]
- Chandra, R.; Johansson, A.J.; Gustafsson, M.; Tufvesson, F. A microwave imaging-based technique to localize an in-body RF source for biomedical applications. IEEE Trans. Biomed. Eng. 2015, 62, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Haynes, M.; Stang, J.; Moghaddam, M. Real-time microwave imaging of differential temperature for thermal therapy monitoring. IEEE Trans. Biomed. Eng. 2014, 61, 1787–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Q.; Yuan, S.; Guo, F. A new synthesis aperture-MUSIC algorithm for damage diagnosis on complex aircraft structures. Mech. Syst. Signal Proc. 2020, 136, 106491. [Google Scholar] [CrossRef]
- Foudazix, A.; Mirala, A.; Ghasr, M.T.; Donnell, K.M. Active microwave thermography for nondestructive evaluation of surface cracks in metal structures. IEEE Trans. Instrum. Meas. 2019, 68, 576–585. [Google Scholar] [CrossRef]
- Taillet, E.; Lataste, J.F.; Rivard, P.; Denis, A. Non-destructive evaluation of cracks in massive concrete using normal dc resistivity logging. NDT E Int. 2014, 63, 11–20. [Google Scholar] [CrossRef]
- Jung, S.H.; Cho, Y.S.; Park, R.S.; Kim, J.M.; Jung, H.K.; Chung, Y.S. High-resolution millimeter-wave ground-based SAR imaging via compressed sensing. IEEE Trans. Magn. 2018, 54, 9400504. [Google Scholar] [CrossRef]
- Liu, X.; Serhir, M.; Lambert, M. Detectability of underground electrical cables junction with a ground penetrating radar: Electromagnetic simulation and experimental measurements. Constr. Build. Mater. 2018, 158, 1099–1110. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.T.; Ling, H. Application of compressive sensing to two-dimensional radar imaging using a frequency-scanned microstrip leaky wave antenna. J. Electromagn. Eng. Sci. 2017, 17, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kress, R. Inverse scattering from an open arc. Math. Meth. Appl. Sci. 1995, 18, 267–293. [Google Scholar] [CrossRef]
- Carpio, A.; Dimiduk, T.G.; Louër, F.L.; Rapún, M.L. When topological derivatives met regularized Gauss–Newton iterations in holographic 3D imaging. J. Comput. Phys. 2019, 388, 224–251. [Google Scholar] [CrossRef] [Green Version]
- Mojabi, P.; LoVetri, J. Microwave biomedical imaging using the multiplicative regularized Gauss-Newton inversion. IEEE Antennas Propag. Lett. 2009, 8, 645–648. [Google Scholar] [CrossRef]
- Colton, D.; Monk, P. The detection and monitoring of leukemia using electromagnetic waves: Numerical analysis. Inverse Prob. 1995, 11, 329–341. [Google Scholar] [CrossRef]
- Franchois, A.; Pichot, C. Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method. IEEE Trans. Antennas Propag. 1997, 45, 203–215. [Google Scholar] [CrossRef]
- Dorn, O.; Lesselier, D. Level set methods for inverse scattering. Inverse Prob. 2006, 22, R67–R131. [Google Scholar] [CrossRef] [Green Version]
- Ammari, H.; Garapon, P.; Jouve, F.; Kang, H.; Lim, M.; Yu, S. A new optimal control approach for the reconstruction of extended inclusions. SIAM J. Control Optim. 2013, 51, 1372–1394. [Google Scholar] [CrossRef] [Green Version]
- Park, W.K.; Lesselier, D. MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix. Inverse Prob. 2009, 25, 075002. [Google Scholar] [CrossRef]
- Park, W.K. Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix. Mech. Syst. Signal Proc. 2021, 153, 107501. [Google Scholar] [CrossRef]
- Park, W.K.; Kim, H.P.; Lee, K.J.; Son, S.H. MUSIC algorithm for location searching of dielectric anomalies from S-parameters using microwave imaging. J. Comput. Phys. 2017, 348, 259–270. [Google Scholar] [CrossRef]
- Park, W.K. Real-time microwave imaging of unknown anomalies via scattering matrix. Mech. Syst. Signal Proc. 2019, 118, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Park, W.K. Fast imaging of thin, curve-like electromagnetic inhomogeneities without a priori information. Mathematics 2020, 8, 799. [Google Scholar] [CrossRef]
- Guo, J.; Yan, G.; Jin, J.; Hu, J. The factorization method for cracks in inhomogeneous media. Appl. Math. 2017, 62, 509–533. [Google Scholar] [CrossRef]
- Park, W.K. Experimental validation of the factorization method to microwave imaging. Results Phys. 2020, 17, 103071. [Google Scholar] [CrossRef]
- Louër, F.L.; Rapún, M.L. Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I: One step method. SIAM J. Imag. Sci. 2017, 10, 1291–1321. [Google Scholar] [CrossRef]
- Yuan, H.; Bracq, G.; Lin, Q. Inverse acoustic scattering by solid obstacles: Topological sensitivity and its preliminary application. Inverse Probl. Sci. Eng. 2016, 24, 92–126. [Google Scholar] [CrossRef]
- Agarwal, K.; Chen, X.; Zhong, Y. A multipole-expansion based linear sampling method for solving inverse scattering problems. Opt. Express 2010, 18, 6366–6381. [Google Scholar] [CrossRef]
- Aram, M.G.; Haghparast, M.; Abrishamian, M.S.; Mirtaheri, A. Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems. Inverse Probl. Sci. Eng. 2016, 24, 1347–1363. [Google Scholar] [CrossRef]
- Ito, K.; Jin, B.; Zou, J. A direct sampling method to an inverse medium scattering problem. Inverse Prob. 2012, 28, 025003. [Google Scholar] [CrossRef]
- Ito, K.; Jin, B.; Zou, J. A direct sampling method for inverse electromagnetic medium scattering. Inverse Prob. 2013, 29, 095018. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Lambert, M.; Park, W.K. Direct sampling method for imaging small dielectric inhomogeneities: Analysis and improvement. Inverse Prob. 2018, 34, 095005. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Lambert, M.; Ahn, C.Y.; Ha, T.; Park, W.K. Single- and multi-frequency direct sampling methods in limited-aperture inverse scattering problem. IEEE Access 2020, 8, 121637–121649. [Google Scholar] [CrossRef]
- Park, W.K. Detection of small inhomogeneities via direct sampling method in transverse electric polarization. Appl. Math. Lett. 2018, 79, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.Y.; Ha, T.; Park, W.K. Direct sampling method for identifying magnetic inhomogeneities in limited-aperture inverse scattering problem. Comput. Math. Appl. 2020, 80, 2811–2829. [Google Scholar] [CrossRef]
- Park, W.K. Direct sampling method for retrieving small perfectly conducting cracks. J. Comput. Phys. 2018, 373, 648–661. [Google Scholar] [CrossRef] [Green Version]
- Chow, Y.T.; Ito, K.; Liu, K.; Zou, J. Direct sampling method for diffusive optical tomography. SIAM J. Sci. Comput. 2015, 37, A1658–A1684. [Google Scholar] [CrossRef]
- Chow, Y.T.; Ito, K.; Zou, J. A direct sampling method for electrical impedance tomography. Inverse Prob. 2014, 30, 095003. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Xu, Y.; Zou, J. A multilevel sampling method for detecting sources in a stratified ocean waveguide. J. Comput. Appl. Math. 2017, 309, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Liu, X.; Zhang, B. Phaseless inverse source scattering problem: Phase retrieval, uniqueness and direct sampling methods. J. Comput. Phys. X 2019, 1, 100003. [Google Scholar] [CrossRef]
- Kang, S.; Lambert, M.; Park, W.K. Analysis and improvement of direct sampling method in the mono-static configuration. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1721–1725. [Google Scholar] [CrossRef]
- Park, W.K. Direct sampling method for anomaly imaging from scattering parameter. Appl. Math. Lett. 2018, 81, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Son, S.H.; Lee, K.J.; Park, W.K. Application and analysis of direct sampling method in real-world microwave imaging. Appl. Math. Lett. 2019, 96, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Park, W.K. Negative result of multi-frequency direct sampling method in microwave imaging. Results Phys. 2019, 12, 859–860. [Google Scholar] [CrossRef]
- Slaney, M.; Kak, A.C.; Larsen, L.E. Limitations of imaging with first-order diffraction tomography. IEEE Trans. Microwave Theory Tech. 1984, 32, 860–874. [Google Scholar] [CrossRef] [Green Version]
- Ammari, H.; Garnier, J.; Kang, H.; Park, W.K.; Sølna, K. Imaging schemes for perfectly conducting cracks. SIAM J. Appl. Math. 2011, 71, 68–91. [Google Scholar] [CrossRef] [Green Version]
- Park, W.K. Improvement of direct sampling method in transverse electric polarization. Appl. Math. Lett. 2019, 88, 209–215. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.-K. Theoretical Identification of Coupling Effect and Performance Analysis of Single-Source Direct Sampling Method. Mathematics 2021, 9, 1065. https://doi.org/10.3390/math9091065
Park W-K. Theoretical Identification of Coupling Effect and Performance Analysis of Single-Source Direct Sampling Method. Mathematics. 2021; 9(9):1065. https://doi.org/10.3390/math9091065
Chicago/Turabian StylePark, Won-Kwang. 2021. "Theoretical Identification of Coupling Effect and Performance Analysis of Single-Source Direct Sampling Method" Mathematics 9, no. 9: 1065. https://doi.org/10.3390/math9091065
APA StylePark, W.-K. (2021). Theoretical Identification of Coupling Effect and Performance Analysis of Single-Source Direct Sampling Method. Mathematics, 9(9), 1065. https://doi.org/10.3390/math9091065