Fractional System of Korteweg-De Vries Equations via Elzaki Transform
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math> of example 1.</p> "> Figure 2
<p>Error graphs of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math> of example 1.</p> "> Figure 3
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> of example 2.</p> "> Figure 4
<p>Error graphs of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> of example 2.</p> "> Figure 5
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and error plot at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> of example 3.</p> "> Figure 6
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and error plot at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> of example 3.</p> "> Figure 7
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>(</mo> <mi>ζ</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math> and error plot at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> of example 3.</p> ">
Abstract
:1. Introduction
2. Basic Preliminaries
3. The General Methodology of New Iterative Transform Method (NITM)
4. Applications of the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KdVE | Korteweg-de Vries equation |
ET | Elzaki transform |
NIM | New Iterative method |
FC | fractional calculus |
PDEs | partial differential equations |
MCKdV | modified coupled Koreweg-de Vries system |
NITM | New Iterative transform method |
References
- Jafari, H.; Jassim, H.; Baleanu, D.; Chu, Y. On the Approximate Solutions for a System of Coupled Korteweg De Vries Equations with Local Fractional Derivative. Fractals 2021. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ashraf, F.; Younis, M.; Iqbal, H.; Baleanu, D. Lump and Interaction solutions of a geophysical Korteweg-de Vries equation. Results Phys. 2020, 19, 103661. [Google Scholar] [CrossRef]
- Park, C.; Nuruddeen, R.I.; Ali, K.K.; Muhammad, L.; Osman, M.S.; Baleanu, D. Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations. Adv. Differ. Equ. 2020, 1–12. [Google Scholar] [CrossRef]
- Cheemaa, N.; Seadawy, A.R.; Sugati, T.G.; Baleanu, D. Study of the dynamical nonlinear modified Korteweg-de Vries equation arising in plasma physics and its analytical wave solutions. Results Phys. 2020, 19, 103480. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Abbas, S.; Al Qurashi, M.; Baleanu, D. A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations. Adv. Differ. Equ. 2020, 1–18. [Google Scholar] [CrossRef]
- Matinfar, M.; Eslami, M.; Kordy, M. The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations. Pramana 2015, 85, 583–592. [Google Scholar] [CrossRef]
- Bekir, A.; Guner, O. Analytical approach for the space-time nonlinear partial differential fractional equation. Int. J. Nonlinear Sci. Numer. Simul. 2014, 15, 463–470. [Google Scholar] [CrossRef]
- Vázquez, L.; Jafari, H. Fractional calculus: Theory and numerical methods. Open Phys. 2013, 11. [Google Scholar] [CrossRef]
- Wu, Y.; Geng, X.; Hu, X.; Zhu, S. A generalized Hirota-Satsuma coupled Korteweg-de Vries equation and Miura transformations. Phys. Lett. A 1999, 255, 259–264. [Google Scholar] [CrossRef]
- Abazari, R.; Abazari, M. Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 619–629. [Google Scholar] [CrossRef]
- Ganji, D.D.; Rafei, M. Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method. Phys. Lett. A 2006, 356, 131–137. [Google Scholar] [CrossRef]
- Akinyemi, L.; Huseen, S.N. A powerful approach to study the new modified coupled Korteweg-de Vries system. Math. Comput. Simul. 2020, 177, 556–567. [Google Scholar] [CrossRef]
- Chen, C.K.; Ho, S.H. Solving partial differential equations by two-dimensional differential transform method. Appl. Math. Comput. 1999, 106, 171–179. [Google Scholar]
- Gao, Y.T.; Tian, B. Ion-acoustic shocks in space and laboratory dusty plasmas: Two dimensional and non-traveling-wave observable effects. Phys. Plasmas 2001, 8, 3146–3149. [Google Scholar] [CrossRef]
- Osborne, A. The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves. Chaos Solitons Fractals 1995, 5, 2623–2637. [Google Scholar] [CrossRef]
- Ostrovsky, L.; Yu, A. Stepanyants, Do internal solutions exist in the ocean. Rev. Geophys. 1989, 27, 293–310. [Google Scholar] [CrossRef]
- Maturi, D. Homotopy Perturbation Method for the Generalized Hirota-Satsuma Coupled KdV Equation. Appl. Math. 2012, 3, 1983–1989. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhou, Y.; Li, Z. Application of a homogeneous balance method to exact solutions of non-linear equations in mathematical physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Gokdogan, A.; Yildirim, A.; Merdan, M. Solving coupled-KdV equations by differential transformation method. World Appl. Sci. J. 2012, 19, 1823–1828. [Google Scholar]
- Jafari, H.; Firoozjaee, M.A. Homotopy analysis method for solving KdV equations. Surv. Math. Appl. 2010, 5, 89–98. [Google Scholar]
- Lu, D.; Suleman, M.; Ramzan, M.; Ul Rahman, J. Numerical solutions of coupled nonlinear fractional KdV equations using He’s fractional calculus. Int. J. Mod. Phys. B 2021, 35, 2150023. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Torky, M.S. Numerical solution of non-linear system of partial differential equations by the Laplace decomposition method and the Pade approximation. Am. J. Comput. Math. 2013, 3, 175. [Google Scholar] [CrossRef] [Green Version]
- Seadawy, A.R.; El-Rashidy, K. Water wave solutions of the coupled system Zakharov-Kuznetsov and generalized coupled KdV equations. Sci. World J. 2014, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, E. Using symbolic computation to exactly solve a new coupled MKdV system. Phys. Lett. A 2002, 299, 46–48. [Google Scholar] [CrossRef]
- Inc, M.; Cavlak, E. On numerical solutions of a new coupled MKdV system by using the Adomian decomposition method and He’s variational iteration method. Phys. Scr. 2008, 78, 1–7. [Google Scholar] [CrossRef]
- Ghoreishi, M.; Ismail, A.I.; Rashid, A. The solution of coupled modifed KdV system by the homotopy analysis method. TWMS J. Pure Appl. Math. 2012, 3, 122–134. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Nazari, M.; Baleanu, D.; Khalique, C.M. A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 2013, 66, 838–843. [Google Scholar] [CrossRef]
- Yan, L. Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method. Abstr. Appl. Anal. 2013, 2013, 465160. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, M.; Baleanu, D. A new iterative technique for a fractional model of nonlinear Zakharov-Kuznetsov equations via Sumudu transform. Appl. Math. Comput. 2018, 334, 30–40. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Al-luhaibi, M.S. New iterative method for solving the fornberg-whitham equation and comparison with homotopy perturbation transform method. J. Adv. Math. Comput. Sci. 2014, 4, 1213–1227. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Elzaki, T.M.; Chamekh, M. New transform iterative method for solving some Klein-Gordon equations. Results Phys. 2018, 10, 655–659. [Google Scholar] [CrossRef]
- Elzaki, T.M. On the connections between Laplace and Elzaki transforms. Adv. Theor. Appl. Math. 2011, 6, 1–11. [Google Scholar]
- Elzaki, T.M. On The New Integral Transform “Elzaki Transform” Fundamental Properties Investigations and Applications. Glob. J. Math. Sci. Theory Pract. 2012, 4, 1–13. [Google Scholar]
ITM | App. | Exact | AE | ||||||
---|---|---|---|---|---|---|---|---|---|
−30 | 0.1 | 0.02763 | 0.00378 | 0.02654 | 0.00391 | 0.02741 | 0.00271 | 7.3 | 4.7 |
0.3 | 0.02764 | 0.00375 | 0.02637 | 0.00389 | 0.02769 | 0.00277 | 2.2 | 1.2 | |
0.5 | 0.02756 | 0.00373 | 0.02620 | 0.00386 | 0.02757 | 0.00284 | 3.4 | 2.2 | |
0 | 0.1 | 0.29676 | 0.04117 | 0.23657 | 0.04193 | 0.29617 | 0.03106 | 3.1 | 2.2 |
0.3 | 0.29686 | 0.04113 | 0.29378 | 0.04116 | 0.29668 | 0.03114 | 1.2 | 7.8 | |
0.5 | 0.29662 | 0.04145 | 0.29839 | 0.04118 | 0.29640 | 0.03131 | 1.7 | 1.5 | |
30 | 0.1 | 0.00370 | 0.00047 | 0.00347 | 0.00049 | 0.00346 | 0.00039 | 1.3 | 7.1 |
0.3 | 0.00346 | 0.00047 | 0.00347 | 0.00049 | 0.00346 | 0.00039 | 3.851 | 2.2 | |
0.5 | 0.00347 | 0.00049 | 0.00342 | 0.00049 | 0.00346 | 0.00039 | 5.6 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Chen, N.; Dassios, I.; Shah, N.A.; Chung, J.D. Fractional System of Korteweg-De Vries Equations via Elzaki Transform. Mathematics 2021, 9, 673. https://doi.org/10.3390/math9060673
He W, Chen N, Dassios I, Shah NA, Chung JD. Fractional System of Korteweg-De Vries Equations via Elzaki Transform. Mathematics. 2021; 9(6):673. https://doi.org/10.3390/math9060673
Chicago/Turabian StyleHe, Wenfeng, Nana Chen, Ioannis Dassios, Nehad Ali Shah, and Jae Dong Chung. 2021. "Fractional System of Korteweg-De Vries Equations via Elzaki Transform" Mathematics 9, no. 6: 673. https://doi.org/10.3390/math9060673
APA StyleHe, W., Chen, N., Dassios, I., Shah, N. A., & Chung, J. D. (2021). Fractional System of Korteweg-De Vries Equations via Elzaki Transform. Mathematics, 9(6), 673. https://doi.org/10.3390/math9060673