Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid
<p>DFIG reference systems.</p> "> Figure 2
<p>DFIG control structure.</p> "> Figure 3
<p>Grid voltage reference system.</p> "> Figure 4
<p>Grid side converter control structure.</p> "> Figure 5
<p>DFIG generator connected to the main grid trough line impedance.</p> "> Figure 6
<p>Droop characteristics. Left frequency, right voltage.</p> "> Figure 7
<p>Turbine deloaded and maximum power curves.</p> "> Figure 8
<p>DFIG reference generation of active power. Droop and smart grid supervisor defined control.</p> "> Figure 9
<p>Stator <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>−</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> </mrow> </semantics></math> boundaries for rated current of the rotor.</p> "> Figure 10
<p>Maximum mechanical power and reactive powers obtainable for maximum rotor current. DFIG 7.5 kW, green curve. DFIG 1.2 MW, blue curve.</p> "> Figure 11
<p>Diagram for generating the reactive power references of the stator and the GSC converter.</p> "> Figure 12
<p>DFIG platform used to test the proposed control strategies.</p> "> Figure 13
<p>DFIG signals for a wind speed from 7 to 15 m/s. Upper graph, wind speed reference. Second graph, stator, rotor, turbine and total electrical power. Third graph, pitch angle. Fourth graph, references and actual values of rotor current <span class="html-italic">d</span> and <span class="html-italic">q</span> components.</p> "> Figure 14
<p>Single line diagram of the system implemented and used for testing.</p> "> Figure 15
<p>Load voltage for inductive load and voltage compensation with the controlled DFIG reactive power for <a href="#mathematics-09-00143-f014" class="html-fig">Figure 14</a> structure.</p> "> Figure 16
<p>PCC frequency, wind speed and active power. Frequency drop compensation for the resistive load in the scheme of <a href="#mathematics-09-00143-f014" class="html-fig">Figure 14</a>.</p> "> Figure 17
<p>PCC frequency, CP coefficient, DFIG speed, and active power. Frequency drop compensation for the resistive load in the scheme in <a href="#mathematics-09-00143-f014" class="html-fig">Figure 14</a> with the DFIG working deloaded.</p> "> Figure 18
<p>Grid, load, stator, grid side converter, and rotor currents for the process shown in <a href="#mathematics-09-00143-f017" class="html-fig">Figure 17</a>.</p> ">
Abstract
:1. Introduction
2. DFIG Control Equations and Reference System
3. Grid Side Converter Control Equations
4. Droop Control
5. Getting Additional Active Power of the Wind Generator
6. Reactive Power and Voltage Amplitude Control
7. Experimental Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Rotor side converter | |
Grid side converter | |
Direct and quadrature axes expressed in the stationary reference frame | |
Rotor direct and quadrature axes expressed in the rotor reference frame | |
Direct and quadrature axes expressed in the synchronous rotating reference frame | |
Stator voltage vector | |
Stator current vector | |
Stator flux vector | |
Lm | DFIG mutual inductance |
Ls | DFIG stator inductance |
Lr | DFIG rotor inductance |
Lls | DFIG stator leakage inductance |
Llr | DFIG rotor leakage inductance |
Rs | DFIG stator resistance |
Rr | DFIG rotor resistance |
ωe | Synchronous speed |
ωr | Rotor electrical speed |
ωm | Rotor mechanical speed |
Te | DFIG electromagnetic torque |
TL | DFIG load torque |
J | DFIG inertia |
B | DFIG friction coefficient |
RL | Load resistance |
LL | Load inductance |
Ps | DFIG stator active power |
Qs | DFIG stator reactive power |
Pp | Pair of poles |
Grid voltage vector | |
Grid current vector | |
Rg | Grid filter resistance |
Lg | Grid filter inductance |
ωg | Grid frequency |
Grid side converter output voltage vector | |
Pg | Grid side converter active power |
Qg | Grid side converter reactive power |
P | DFIG total active power |
Q | DFIG total reactive power |
S | DFIG total apparent power |
Z | Line impedance |
KP | Voltage droop coefficient |
KQ | Frequency droop coefficient |
Vs | |
Vg | |
Angle between the DFIG stator voltage and the grid voltage | |
Propeller speed | |
Deloading propeller speed | |
Propeller optimum speed | |
Line inductance | |
IGBT | Insulated gate bipolar transistor |
References and Note
- Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects; A Global Energy Transformation Paper; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2019.
- Tasneem, Z.; Al Noman, A.; Das, S.K.; Saha, D.K.; Islam, R.; Ali, F.; Badal, F.R.; Ahamed, H.; Moyeen, S.I.; Alam, F. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges. Dev. Built Environ. 2020, 4, 100033. [Google Scholar] [CrossRef]
- Sunderland, K.M.; Mills, G.; Conlon, M.F. Estimating the wind resource in an urban area: A case study of micro-wind generation potential in Dublin, Ireland. J. Wind Eng. Ind. Aerodyn. 2013, 118, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Drew, D.R.; Barlow, J.F.; Cockerill, T.T. Estimating the potential yield of small wind turbines in urban areas: A case study for Greater London, UK. J. Wind Eng. Ind. Aerodyn. 2013, 115, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, A.A.; Merabet, A. Artificial Neural Network and Kalman Filter for Estimation and Control in Standalone Induction Generator Wind Energy DC Microgrid. Energies 2020, 13, 1743. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.M.; Lumbreras, C.; Reigosa, D.; Garcia, P.; Briz, F. Control and emulation of small wind turbines using torque estimators. IEEE Trans. Industy Appl. 2011, 53, 4863–4876. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, D.; Tricarico, G.; Brescia, E.; Cascella, G.L.; Monopoli, V.G.; Cupertino, F. Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer. Energies 2020, 13, 4647. [Google Scholar] [CrossRef]
- Liu, T.; Gong, A.; Song, C.; Wang, Y. Sliding Mode Control of Active Trailing-Edge Flap Based on Adaptive Reaching Law and Minimum Parameter Learning of Neural Networks. Energies 2020, 13, 1029. [Google Scholar] [CrossRef] [Green Version]
- Bashetty, S.; Guillamon, J.I.; Mutnuri, S.S.; Ozcelik, S. Design of a Robust Adaptive Controller for the Pitch and Torque Control of Wind Turbines. Energies 2020, 13, 1195. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Ma, L.; Liu, X.; Abdelbaky, M.A.; Wu, Q. Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions. Energies 2020, 13, 184. [Google Scholar] [CrossRef] [Green Version]
- Elorza, I.; Calleja, C.; Pujana-Arrese, A. On Wind Turbine Power Delta Control. Energies 2019, 12, 2344. [Google Scholar] [CrossRef] [Green Version]
- Barambones, O.; Cortajarena, J.A.; Calvo, I.; Gonzalez de Durana, J.M.; Alkorta, P.; Karami, A. Variable speed wind turbine control scheme using a robust wind torque estimation. Renew. Energy 2018, 133, 354–366. [Google Scholar] [CrossRef]
- Hansen, A.D.; Iov, F.; Blaabjerg, F.; Hansen, L.H. Review of contemporary wind turbine concepts and their market penetration. J. Wind Eng. 2004, 28, 247–263. [Google Scholar] [CrossRef]
- Ananth, D.V.N.; Nagesh Kumar, G.V. Tip Speed Ratio Based MPPT Algorithm and Improved Field Oriented Control for Extracting Optimal Real Power and Independent Reactive Power Control for Grid Connected Doubly Fed Induction Generator. Int. J. Electr. Comput. Eng. 2016, 6, 1319–1331. [Google Scholar]
- Amrane, F.; Chaiba, A.; Francois, B.; Babes, B. Experimental design of stand-alone field oriented control for WECS in variable speed DFIG-based on hysteresis current controller. In Proceedings of the 2017 15th International Conference on Electrical Machines, Drives and Power Systems, Sofia, Bulgaria, 1–3 June 2017; pp. 1–5. [Google Scholar]
- Djilali, L.; Sanchez, E.N.; Belkheir, M. Real-time implementation of sliding-mode field-oriented control for a DFIG-based wind turbine. Int. Trans. Electr. Energy Syst. 2018, 28, e2539. [Google Scholar] [CrossRef]
- Kaloi, G.S.; Wang, J.; Baloch, M.H. Active and reactive power control of the doubly fed induction generator based on wind energy conversion system. Energy Rep. 2016, 2, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Soued, S.; Ramadan, H.S.; Becherif, M. Dynamic Behavior Analysis for Optimally Tuned On-Grid DFIG Systems. Special Issue on Emerging and Renewable Energy: Generation and Automation. ScienceDirect. Energy Procedia 2019, 162, 339–348. [Google Scholar] [CrossRef]
- Shenglong, Y.; Kianoush, E.; Tyrone, F.; Herbert, H.C.J.; Kit, P.W. State Estimation of Doubly Fed Induction Generator Wind Turbine in Complex Power Systems. IEEE Trans. Power Syst. 2016, 31, 4935–4944. [Google Scholar]
- Palensky, P.; Dietrich, D. Demand side management: Demand response, intelligent energy systems and smart loads. IEEE Trans. Ind. Inform. 2011, 7, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Güngör, V.C.; Sahin, D.; Kocak, T.; Ergüt, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Meng, F.; Wang, R.; Kazemtabrizi, B.; Shi, J. Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid. Energy 2019, 179, 1265–1278. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Yoo, H.J.; Kim, H.M. Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid. Energies 2017, 10, 417. [Google Scholar] [CrossRef] [Green Version]
- Bayhan, H.A.; Ellabban, O. Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid. IET Renew. Power Gener. 2016, 10, 514–521. [Google Scholar] [CrossRef]
- Valencia-Rivera, G.H.; Merchan-Villalba, L.R.; Tapia-Tinoco, G.; Lozano-Garcia, J.M.; Avina-Cervantes MA, I.M.; Gabriel, J. Hybrid LQR-PI Control for Microgrids under Unbalanced Linear and Nonlinear Loads. Mathematics 2020, 8, 1096. [Google Scholar] [CrossRef]
- Thounthong, P.; Mungporn, P.; Pierfederici, S.; Guilbert, D.; Bizon, N. Adaptive Control of Fuel Cell Converter Based on a New Hamiltonian Energy Function for Stabilizing the DC Bus in DC Microgrid Applications. Mathematics 2020, 8, 2035. [Google Scholar] [CrossRef]
- Qiao, W.; Harley, R.G. Grid Connection Requirements and Solutions for DFIG Wind Turbines; IEEE: Piscataway, NJ, USA, 2008. [Google Scholar]
- Cortajarena, J.A.; De Marcos, J.; Alkorta, P.; Barambones, O.; Cortajarena, J. DFIG wind turbine grid connected for frequency and amplitude control in a smart grid. In Proceedings of the 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, New Zealand, 31 January–2 February 2018. [Google Scholar]
- Li, S.; Challoo, R.; Nemmers, M.J. Comparative Study of DFIG Power Control Using Stator Voltage and Stator-Flux Oriented Frames. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–8. [Google Scholar]
- Ghosh, S.; Isbeih, Y.J.; Bhattarai, R.; El Moursi, M.S.; El-Saadany, E.F. A Dynamic Coordination Control Architecture for Reactive Power Capability Enhancement of the DFIG-Based Wind Power Generation. IEEE Trans. Power Syst. 2020, 35, 3051–3064. [Google Scholar] [CrossRef]
- Cortajarena, J.A.; Barambones, O.; Alkorta, P.; De Marcos, J. Sliding mode control of grid-tied single-phase inverter in a photovoltaic MPPT application. Solar Energy 2017, 155, 793–804. [Google Scholar] [CrossRef]
- Kazmierkowski, M.P.; Jasinski, M.; Wrona, G. DSP-Based control of grid-connected power converters operating under grid distortions. IEEE Trans. Ind. Inform. 2011, 7, 204–211. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Matas, J.; Vicuña, L.G.; Castilla, M.; Miret, J. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans. Ind. Electron. 2007, 54, 994–1004. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Vicuña, L.G.; Matas, J.; Castilla, M.; Miret, J. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. Power Electron. 2004, 19, 1205–1213. [Google Scholar] [CrossRef]
- Mun-Kyeom, K. Optimal Control and Operation Strategy for Wind Turbines Contributing to Grid Primary Frequency Regulation. Appl. Sci. 2017, 7, 1–23. [Google Scholar]
- Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control. In Proceedings of the 2012 American Control Conference (ACC), Montréal, QC, Canada, 27–29 June 2012; pp. 1–12. [Google Scholar]
- Matlab/Simulink. Wind turbine model. 2009.
- Ramtharan, G.; Ekanayake, J.B.; Jenkins, N. Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener. 2007, 1, 3–9. [Google Scholar] [CrossRef]
- Saenz-Aguirre, A.; Zulueta, E.; Fernandez-Gamiz, U.; Teso-Fz-Betoño, D.; Olarte, J. Kharitonov Theorem Based Robust Stability Analysis of a Wind Turbine Pitch Control System. Mathematics 2020, 8, 964. [Google Scholar] [CrossRef]
- North American Electric Reliability Corporation. Accommodating High Levels of Variable Generation; North American Electric Reliability Corporation: Princeton, NJ, USA, 2009. [Google Scholar]
- Kayikc, M.; Milanovic, J.V. Reactive power control strategies for DFIG-based plants. IEEE Trans. Energy Convers. 2007, 22, 389–396. [Google Scholar]
- Gallardo, S.; Carrasco, J.M.; Galván, E.; Franquelo, L.G. DSP-based doubly fed induction generator test bench using a back-to-back PWM converter. In Proceedings of the 2004 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, 2–6 November 2004. [Google Scholar]
- dSPACE. Real–Time Interface. In Implementation Guide. Experiment Guide; For Realese 5.0.; GmbH: Paderborn, Germany, 2005. [Google Scholar]
- Cortajarena, J.A.; De Marcos, J.; Alvarez, P.; Vicandi, F.J.; Alkorta, P. Start up and control of a DFIG wind turbine test rig. In Proceedings of the 2011 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011. [Google Scholar]
- Junseon, P.; Seungjin, L.; Joong Yull, P. Effects of the Angled Blades of Extremely Small Wind Turbines on Energy Harvesting Performance. Mathematics 2020, 8, 1295. [Google Scholar]
- Dutt. Power Electronics & Control. Available online: http://www.duttelectronics.com (accessed on 2 October 2020).
Parameter | Value |
---|---|
Stator voltage | 380 V |
Rotor voltage | 190 V |
Rated stator current | 18 A |
Rated rotor current | 24 A |
Rated speed | 1447 rpm @ 50 Hz |
Rated torque | 50 Nm |
Stator resistance | 0.325 Ω |
Rotor resistance | 0.275 Ω |
Magnetizing inductance | 0.0664 H |
Stator leakage inductance | 0.00264 H |
Rotor leakage inductance | 0.00372 H |
Inertia moment | 0.07 Kg*m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortajarena, J.A.; Barambones, O.; Alkorta, P.; Cortajarena, J. Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid. Mathematics 2021, 9, 143. https://doi.org/10.3390/math9020143
Cortajarena JA, Barambones O, Alkorta P, Cortajarena J. Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid. Mathematics. 2021; 9(2):143. https://doi.org/10.3390/math9020143
Chicago/Turabian StyleCortajarena, José Antonio, Oscar Barambones, Patxi Alkorta, and Jon Cortajarena. 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid" Mathematics 9, no. 2: 143. https://doi.org/10.3390/math9020143
APA StyleCortajarena, J. A., Barambones, O., Alkorta, P., & Cortajarena, J. (2021). Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid. Mathematics, 9(2), 143. https://doi.org/10.3390/math9020143