Inertial Neural Networks with Unpredictable Oscillations
<p>The coordinates of the function <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> </mrow> </semantics></math> which exponentially converge to the coordinates of the unpredictable solution of Equation (<a href="#FD23-mathematics-08-01797" class="html-disp-formula">23</a>).</p> "> Figure 2
<p>The irregular trajectory of the solution <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics></math></p> ">
Abstract
:1. Introduction
2. Preliminaries
- (C1)
- for all where are Lipschitz constants, for and
- (C2)
- the functions in system (1) are unpredictable; they belong to and there exist positive numbers and the sequence as such that for all and
- (C3)
- there exists a positive number such that
- (C4)
- (C5)
- for each ;
- (C6)
- H is a positive number, ;
- (C7)
- (C8)
3. Main Results
- (K1)
- functions are uniformly continuous;
- (K2)
- there exists a positive number H such that for all
- (K3)
- there exists a sequence, as such that uniformly converges to on each bounded interval of the real line.
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ge, J.; Xu, J. Weak resonant double Hopf bifurcations in an inertial four-neuron model with time delay. Int. J. Neural Syst. 2012, 22, 22–63. [Google Scholar] [CrossRef]
- Ke, Y.Q.; Miao, C.F. Stability analysis of BAM neural networks with inertial term and time delay. WSEAS Trans. Syst. 2011, 10, 425–438. [Google Scholar]
- Ke, Y.Q.; Miao, C.F. Stability and existence of periodic solutions in inertial BAM neural networks with time delay. Neural Comp. Appl. 2013, 23, 1089–1099. [Google Scholar]
- Qi, J.; Li, C.; Huang, T. Stability of inertial BAM neural network with time-varying delay via impulsive control. Neurocomputing 2015, 161, 162–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Quan, Z. Global exponential stability via inequality technique for inertial BAM neural networks with time delays. Neurocomputing 2015, 151, 1316–1326. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, T.; Li, C.; Yang, J. Robust Stability of Inertial BAM Neural Networks with Time Delays and Uncertainties via Impulsive Effect. Neural Process. Lett. 2018, 44, 245–256. [Google Scholar] [CrossRef]
- Ke, Y.Q.; Miao, C.F. Stability analysis of inertial Cohen–Grossberg-type neural networks with time delays. Neurocomputing 2013, 117, 196–205. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Z.; Quan, Z. New global exponential stability conditions for inertial Cohen–Grossberg neural networks with time delays. Neurocomputing 2015, 151, 1446–1454. [Google Scholar] [CrossRef]
- Babcock, K.L.; Westervelt, R.M. Stability and dynamics of simple electronic neural networks with added inertia. Phys. D Nonlinear Phenom. 1986, 23, 464–469. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Premalatha, S.; Chandrasekar, A.; Cao, J. Stability and synchronization analysis of inertial memristive neural networks with time delays. Cogn. Neurodyn. 2016, 10, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Rakkiyappan, R.; Gayathri, D.; Velmurugan, G.; Cao, J. Exponential Synchronization of Inertial Memristor-Based Neural Networks with Time Delay Using Average Impulsive Interval Approach. Neural Process. Lett. 2019, 50, 2053–2071. [Google Scholar] [CrossRef]
- Qin, S.; Gu, L.; Pan, X. Exponential stability of periodic solution for a memristor-based inertial neural network with time delays. Neural Comp. Appl. 2020, 32, 3265–3281. [Google Scholar] [CrossRef]
- Ramya, C.; Kavitha, G.; Shreedhara, K.S. Recalling of images using Hopfield neural network model. arXiv 2011, arXiv:1105.0332. [Google Scholar]
- Raiko, T.; Valpola, H. Oscillatory neural network for image segmentation with based competition for attention. Adv. Exp. Med. Biol. 2011, 718, 75–85. [Google Scholar] [PubMed] [Green Version]
- Schmidt, H.; Avitabile, D.; Montbrio, E.; Roxin, A. Network mechanisms underlying the role of oscillations in cognitive tasks. PLoS Comput. Biol. 2018, 14, e1006430. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, K.; Wang, X.; Hirsch, J.; Sommer, F. Exploring the function of neural oscillations in early sensory systems, second edition. Front. Neurosci. 2010, 4, 53. [Google Scholar]
- Maguire, M.; Abel, A. What changes in neural oscillations can reveal about developmental cognitive neuroscience: Language development as a case in point. Develop. Cogn. Neurosci. 2013, 6, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.; Roy, R.; Muller-Bender, D.; Otto, A.; Radons, G. Laminar chaos in experiments: Nonlinear systems with time-varying delays and noise. Phys. Rev. Lett. 2019, 123, 154101. [Google Scholar] [CrossRef]
- Korn, H.; Faure, P. Is there chaos in the brain? II. Experimental evidence and related models. Neurosci. C. R. Biol. 2003, 326, 787–840. [Google Scholar] [CrossRef]
- Lassoued, A.; Boubaker, O.; Dhifaoui, R.; Jafari, S. Experimental observations and circuit realization of a jerk chaotic system with piecewise nonlinear function. In Recent Advances in Chaotic Systems and Synchronization; Boubaker, O., Jafari, S., Eds.; Elsevier: San Diego, CA, USA, 2019; pp. 3–21. [Google Scholar]
- Martínez-García, M.; Zhang, Y.; Gordon, T. Memory Pattern Identification for Feedback Tracking Control in Human–Machine Systems. Hum. Factors 2019. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Gedeon, T. Artificial Neural Network Classification Models for Stress in Reading. In ICONIP 2012: Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 388–395. [Google Scholar]
- Costa-juss‘a, M.R. From Feature to Paradigm: Deep Learning in Machine Translation. J. Artif. Intell. Res. 2018, 61, 947–974. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; Sudheer, K.P.; He, J. Quantification of prediction uncertainty in artificial neural network models. In Artificial Neural Network Modelling; Shanmuganathan, S., Samarasinghe, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 145–159. [Google Scholar]
- MacAdam, C.C. Understanding and modeling the human driver. Veh. Syst. Dyn. 2003, 40, 101–134. [Google Scholar] [CrossRef]
- Hui, P.C.L.; Choi, T.-M. Using artificial neural networks to improve decision-making in apparel supply chain systems. In Information Systems for the Fashion and Apparel Industry; Choi, T.-M., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 97–107. [Google Scholar]
- Akhmet, M.; Fen, M.O. Poincaré chaos and unpredictable functions. Commun. Nonlinear Sci. Nummer. Simul. 2017, 48, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Akhmet, M.; Fen, M.O. Non-autonomous equations with unpredictable solutions. Commun. Nonlinear Sci. Nummer. Simul. 2018, 59, 657–670. [Google Scholar] [CrossRef]
- Akhmet, M.; Seilova, R.D.; Tleubergenova, M.; Zhamanshin, A. Shunting inhibitory cellular neural networks with strongly unpredictable oscillations. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105287. [Google Scholar] [CrossRef]
- Akhmet, M.; Fen, M.O. Unpredictable points and chaos. Commun. Nonlinear Sci. Nummer. Simul. 2016, 40, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Akhmet, M.; Fen, M.O. Existence of unpredictable solutions and chaos. Turk. J. Math. 2017, 41, 254–266. [Google Scholar] [CrossRef]
- Miller, A. Unpredictable points and stronger versions of Ruelle–Takens and Auslander—Yorke chaos. Topol. Appl. 2019, 253, 7–16. [Google Scholar] [CrossRef]
- Thakur, R.; Das, R. Strongly Ruelle-Takens, strongly Auslander-Yorke and Poincaré chaos on semiflows. Commun. Nonlinear. Sci. Numer. Simul. 2019, 81, 105018. [Google Scholar] [CrossRef]
- Akhmet, M.; Fen, M.O.; Tleubergenova, M.; Zhamanshin, A. Unpredictable solutions of linear differential and discrete equations. Turk. J. Math. 2019, 43, 2377–2389. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Poincare chaos for a hyperbolic quasilinear system. Miskolc Math. Notes 2019, 20, 33–44. [Google Scholar] [CrossRef]
- Driver, R.D. Ordinary and Delay Differential Equations; Springer Science Business Media: New York, NY, USA, 2012. [Google Scholar]
- Moor, H. MATLAB for Engineers, 3rd ed.; Pearson: London, UK, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Inertial Neural Networks with Unpredictable Oscillations. Mathematics 2020, 8, 1797. https://doi.org/10.3390/math8101797
Akhmet M, Tleubergenova M, Zhamanshin A. Inertial Neural Networks with Unpredictable Oscillations. Mathematics. 2020; 8(10):1797. https://doi.org/10.3390/math8101797
Chicago/Turabian StyleAkhmet, Marat, Madina Tleubergenova, and Akylbek Zhamanshin. 2020. "Inertial Neural Networks with Unpredictable Oscillations" Mathematics 8, no. 10: 1797. https://doi.org/10.3390/math8101797
APA StyleAkhmet, M., Tleubergenova, M., & Zhamanshin, A. (2020). Inertial Neural Networks with Unpredictable Oscillations. Mathematics, 8(10), 1797. https://doi.org/10.3390/math8101797