Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration
<p>Framework of the proposed algorithm.</p> "> Figure 2
<p>Average rewards vs. no. of episodes.</p> "> Figure 3
<p>The total time delay according to different schemes vs. <math display="inline"><semantics> <mi mathvariant="script">F</mi> </semantics></math>m,k, with <span class="html-italic">K</span> = 100 and <math display="inline"><semantics> <msub> <mi>ζ</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> = 30 Giga cycles/s.</p> "> Figure 4
<p>The total time delay according to different schemes vs. <math display="inline"><semantics> <msub> <mi>ζ</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>, with <span class="html-italic">K</span> = 100 and <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </semantics></math> = 600 cycles/bit.</p> "> Figure 5
<p>The total time delay vs. no. of UEs.</p> "> Figure 6
<p>Task completion ratio vs. no. of UEs.</p> ">
Abstract
:1. Introduction
1.1. Contributions
- We propose a novel optimization framework for a MEC system hosted within a massive MBS and assisted by a RIS-equipped UAV capable of flying within the coverage area. For this system, we formulate an optimization problem aimed at minimizing system latency by jointly optimizing the power allocation for each user, user association, phase shift configuration of RIS reflecting elements, and computing resource allocation at the MBS, all subject to the MBS’s computing resource constraints and QoS requirements. Moreover, this optimization problem is formulated into a Markov decision process (MDP).
- Addressing the challenge of discrete-continuous hybrid action spaces, the paper proposes a unique solution that integrates a mechanism to represent discrete actions using an embedding table and leverages a conditional variational autoencoder to handle continuous actions. By integrating these into a unified hybrid action space, the framework leverages the twin delayed deep deterministic policy gradient (TD3) algorithm to solve the joint optimization problem effectively.
- Extensive simulation results reveal that the proposed algorithm, when compared with benchmark approaches, effectively minimizes the total latency for executing tasks across all users.
1.2. Paper Organization
2. Related Work
3. System Model
3.1. Channel Model
3.2. Transmission Scheme
3.3. Offloading Model
3.3.1. Local Computing
3.3.2. Offloading to MBS
4. Problem Formulation
5. Proposed Scheme
5.1. MDP Formulation
5.1.1. Sate Space
5.1.2. Action State
5.1.3. Reward Function
5.2. DRL-Based Algorithm
5.2.1. Hybrid Space Modeling in UAV-RIS-Assisted MEC
5.2.2. Long-Term Latency Minimization Algorithm for UAV-RIS-Assisted MEC Systems
Algorithm 1 Proposed algorithm for the UAV-RIS-assisted MEC optimization. |
|
5.2.3. Computation Complexity
6. Numerical Results
- Deep Q-network (DQN) (Khan et al. [27]): DQN algorithm is designed for discrete action spaces, where a neural network approximates the Q-value function to derive optimal policies.
- Soft actor–critic (SAC) (Heidarpour et al. [28]): SAC is a model-free, off-policy algorithm optimized for continuous action spaces. It employs a stochastic policy with an entropy-based objective to balance exploration and exploitation. While SAC performs well in purely continuous environments.
- Multi-Agent deep deterministic policy gradient (MADDPG) (Tariq et al. [3]): MADDPG extends deterministic policy gradient methods to multi-agent systems, facilitating coordinated decision-making among RIS-equipped UAVs and MEC servers.
- Proposed scheme: The proposed approach employs a hybrid discrete-continuous optimization framework with hybrid space representation to optimize task offloading, power allocation, and RIS phase configurations. By integrating a conditional variational autoencoder and the TD3 algorithm, it addresses hybrid action spaces.
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DRL | deep reinforcement learning |
IoT | Internet of Things |
ITU | International Telecommunication Union |
LoS | line-of-sight |
MEC | multi-access edge computing |
MDP | Markov decision process |
MBS | MIMO base station |
QoS | quality of service |
RISs | reconfigurable intelligent surfaces |
TDMA | time division multiple access |
UAVs | unmanned aerial vehicles |
UE | user equipment |
References
- Measuring Digital Development—Facts and Figures 2023. Available online: https://www.itu.int/hub/publication/d-ind-ict_mdd-2023-1/ (accessed on 20 January 2025).
- Ahmed, M.; Raza, S.; Soofi, A.A.; Khan, F.; Khan, W.U.; Xu, F.; Chatzinotas, S.; Dobre, O.A.; Han, Z. A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges. Comput. Sci. Rev. 2024, 54, 100668. [Google Scholar] [CrossRef]
- Tariq, M.N.; Wang, J.; Raza, S.; Siraj, M.; Altamimi, M.; Memon, S. Towards Optimal Resource Allocation: A Multi-agent DRL based Task Offloading Approach in Multi-UAV-Assisted MEC Networks. IEEE Access 2024, 12, 81428–81440. [Google Scholar] [CrossRef]
- Ahmed, M.; Raza, S.; Soofi, A.A.; Khan, F.; Khan, W.U.; Abideen, S.Z.U.; Xu, F.; Han, Z. Active reconfigurable intelligent surfaces: Expanding the frontiers of wireless communication—A survey. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
- Mehrabian, A.; Wong, V.W. Joint Spectrum, Precoding, and Phase Shifts Design for RIS-Aided Multiuser MIMO THz Systems. IEEE Trans. Commun. 2024, 72, 5087–5101. [Google Scholar] [CrossRef]
- Xu, F.; Ahmad, S.; Ahmed, M.; Raza, S.; Khan, F.; Ma, Y.; Khan, W.U. Beyond encryption: Exploring the potential of physical layer security in UAV networks. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101717. [Google Scholar] [CrossRef]
- Banafaa, M.K.; Pepeoğlu, Ö.; Shayea, I.; Alhammadi, A.; Shamsan, Z.A.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A comprehensive survey on 5G-and-beyond networks with UAVs: Applications, emerging technologies, regulatory aspects, research trends and challenges. IEEE Access 2024, 12, 7786–7826. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Zou, Y.; Liu, Y. Reconfigurable intelligence surface aided UAV-MEC systems with NOMA. IEEE Commun. Lett. 2022, 26, 2121–2125. [Google Scholar] [CrossRef]
- Hu, H.; Sheng, Z.; Nasir, A.A.; Yu, H.; Fang, Y. Computation Capacity Maximization for UAV and RIS Cooperative MEC System with NOMA. IEEE Commun. Lett. 2024, 28, 592–596. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, J.; Chen, G.; Zhou, X.; Li, Y.; Liu, S. RIS-Aided Latency-Efficient MEC HetNet with Wireless Backhaul. IEEE Trans. Veh. Technol. 2024, 73, 8705–8719. [Google Scholar] [CrossRef]
- Ning, Z.; Dong, P.; Wen, M.; Wang, X.; Guo, L.; Kwok, R.Y.; Poor, H.V. 5G-enabled UAV-to-community offloading: Joint trajectory design and task scheduling. IEEE J. Sel. Areas Commun. 2021, 39, 3306–3320. [Google Scholar] [CrossRef]
- Song, F.; Xing, H.; Wang, X.; Luo, S.; Dai, P.; Xiao, Z.; Zhao, B. Evolutionary multi-objective reinforcement learning based trajectory control and task offloading in UAV-assisted mobile edge computing. IEEE Trans. Mob. Comput. 2022, 22, 7387–7405. [Google Scholar] [CrossRef]
- Xu, B.; Kuang, Z.; Gao, J.; Zhao, L.; Wu, C. Joint offloading decision and trajectory design for UAV-enabled edge computing with task dependency. IEEE Trans. Wirel. Commun. 2022, 22, 5043–5055. [Google Scholar] [CrossRef]
- Goudarzi, S.; Soleymani, S.A.; Wang, W.; Xiao, P. Uav-enabled mobile edge computing for resource allocation using cooperative evolutionary computation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5134–5147. [Google Scholar] [CrossRef]
- Bai, Z.; Lin, Y.; Cao, Y.; Wang, W. Delay-Aware Cooperative Task Offloading for Multi-UAV Enabled Edge-Cloud Computing. IEEE Trans. Mob. Comput. 2024, 23, 1034–1049. [Google Scholar] [CrossRef]
- Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.C.; Niyato, D. Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2022, 21, 6949–6960. [Google Scholar] [CrossRef]
- Zhai, Z.; Dai, X.; Duo, B.; Wang, X.; Yuan, X. Energy-efficient UAV-mounted RIS assisted mobile edge computing. IEEE Wirel. Commun. Lett. 2022, 11, 2507–2511. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014, 3, 569–572. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans. Commun. 2019, 68, 1838–1851. [Google Scholar] [CrossRef]
- Raza, S.; Liu, W.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Sun, Q.; Wang, S. An efficient task offloading scheme in vehicular edge computing. J. Cloud Comput. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Raza, S.; Wang, S.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Khan, W.U. Task offloading and resource allocation for IoV using 5G NR-V2X communication. IEEE Internet Things J. 2021, 9, 10397–10410. [Google Scholar] [CrossRef]
- Raza, S.; Ahmed, M.; Ahmad, H.; Mirza, M.A.; Habib, M.A.; Wang, S. Task offloading in mmwave based 5g vehicular cloud computing. J. Ambient Intell. Humaniz. Comput. 2023, 14, 12595–12607. [Google Scholar] [CrossRef]
- Ahmed, M.; Raza, S.; Ahmad, H.; Khan, W.U.; Xu, F.; Rabie, K. Deep reinforcement learning approach for multi-hop task offloading in vehicular edge computing. Eng. Sci. Technol. Int. J. 2024, 59, 101854. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Tuan, H.D.; Duong, T.Q.; Dobre, O.A.; Poor, H.V. Downlink beamforming for energy-efficient heterogeneous networks with massive MIMO and small cells. IEEE Trans. Wirel. Commun. 2018, 17, 3386–3400. [Google Scholar] [CrossRef]
- Liu, T.; Tang, L.; Wang, W.; Chen, Q.; Zeng, X. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network. IEEE Internet Things J. 2021, 9, 1427–1444. [Google Scholar] [CrossRef]
- Khan, I.; Raza, S.; Rehman, W.u.; Khan, R.; Nahida, K.; Tao, X. A Deep Learning-Based Algorithm for Energy and Performance Optimization of Computational Offloading in Mobile Edge Computing. Wirel. Commun. Mob. Comput. 2023, 2023, 1357343. [Google Scholar] [CrossRef]
- Heidarpour, A.R.; Heidarpour, M.R.; Ardakani, M.; Tellambura, C.; Uysal, M. Soft actor–critic-based computation offloading in multiuser MEC-enabled IoT—A lifetime maximization perspective. IEEE Internet Things J. 2023, 10, 17571–17584. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
MBS coverage radius for direct connection | 500 m |
Maximum distance of users from MBS | 2000 m |
3D Cartesian coordinates of the MBS | |
Altitude range of RIS-equipped UAV | m |
Maximum transmission power () | 30 dBm |
Central frequency () | 2.4 GHz |
Bandwidth (W) | 1 MHz |
White noise spectral density () | dBm/Hz |
Minimum achievable uplink rate () | 1 Mbps |
Task size () | 100 kB |
Task computation complexity () | 600 cycles/bit |
Maximum MEC server computing resource () | 30 Giga cycles/s |
Maximum UE computing resource () | 0.5 Giga cycles/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrani, A. Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration. Mathematics 2025, 13, 871. https://doi.org/10.3390/math13050871
Alshahrani A. Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration. Mathematics. 2025; 13(5):871. https://doi.org/10.3390/math13050871
Chicago/Turabian StyleAlshahrani, Abdullah. 2025. "Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration" Mathematics 13, no. 5: 871. https://doi.org/10.3390/math13050871
APA StyleAlshahrani, A. (2025). Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration. Mathematics, 13(5), 871. https://doi.org/10.3390/math13050871