Source Quantization and Coding over Noisy Channel Analysis
<p>The coding relation between the quantization space and the linear block code.</p> "> Figure 2
<p>The proposed VQ scheme based on linear block codes over noisy channels.</p> "> Figure 3
<p>The VQ scheme for the Gaussian source over the noisy channels.</p> "> Figure 4
<p>The VQ scheme for the general source over the noisy channels.</p> "> Figure 5
<p>The distortion and total degree performance for code searching. The objective code is searched by the S-GDA algorithm at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>, and the initial degrees are given as (<b>a</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>: GDA<sub>9×10</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math>: GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>The distortion and total degree performance for code searching. The objective code is searched by the S-GDA algorithm at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>, and the initial degrees are given as (<b>a</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>: GDA<sub>19×20</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math>: GDA<sub>4×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>: GDA<sub>19×20</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics></math>: GDA<sub>2×8</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math>: GDA<sub>4×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics></math>: GDA<sub>2×8</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>The distortion and total degree performance for code searching. The objective code is searched by the S-GDA algorithm at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>, and the initial degrees are given as (<b>a</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>: GDA<sub>17×20</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>51</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math>: GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>: GDA<sub>17×20</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>51</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics></math>: GDA<sub>2×40</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>40</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math>: GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics></math>: GDA<sub>2×40</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>40</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>The distortion–rate performance is tested based on the Gaussian source compression using the MLC structure with the SP mapping over the AWGN channel with BPSK modulation when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 9
<p>The distortion sensitivity is compared with each layer under the channel noise, and the codes are (<b>a</b>) GDA<sub>9×10</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>; (<b>b</b>) GDA<sub>19×20</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, GDA<sub>4×5</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, GDA<sub>2×8</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>) GDA<sub>17×20</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, GDA<sub>2×40</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>40</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>The distortion and total degree performance are tested for different code comparisons based on the Gaussian source compression over the AWGN channel with BPSK modulation when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>, and the codes are given as (<b>a</b>) GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; (<b>b</b>) GDA<sub>3×6</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>; (<b>c</b>) GDA<sub>3×7</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.57</mn> </mrow> </semantics></math>; (<b>d</b>) GDA<sub>3×9</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.66</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>The energy distribution of nodes is compared with the AR3A and S-GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> codes at different lifting numbers.</p> "> Figure 12
<p>The distortion–rate performance is tested based on Gaussian source compression by using the NN structure over the AWGN channel with BPSK modulation when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 13
<p>The distortion and total degree performance are tested for different code comparisons based on Laplacian source compression over the AWGN channel with BPSK modulation when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>, and the codes are given as (<b>a</b>) GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>; (<b>b</b>) GDA<sub>3×7</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.57</mn> </mrow> </semantics></math>; (<b>c</b>) GDA<sub>3×9</sub><math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.66</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>The distortion–rate performance is tested based on Laplacian source compression using the NN structure over the AWGN channel with BPSK modulation when SNR = 7 dB and BER = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 15
<p>The distortion–SNR performance is tested for different degree comparisons based on the Gaussian source with <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>) S-GDA code: GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. (<b>b</b>) S-GDA code: GDA<sub>3×7</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.57</mn> </mrow> </semantics></math>. (<b>c</b>) S-GDA code: GDA<sub>3×9</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.66</mn> </mrow> </semantics></math>.</p> "> Figure 16
<p>The distortion–SNR performance is tested for different degree comparisons based on the Laplacian source with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>. (<b>a</b>) S-GDA code: GDA<sub>3×5</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. (<b>b</b>) S-GDA code: GDA<sub>3×7</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.57</mn> </mrow> </semantics></math>. (<b>c</b>) S-GDA code: GDA<sub>3×9</sub><math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>0.66</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. VQ Scheme over Noisy Channel
2.1. Generalized VQ Scheme
2.2. Coding Methodology of VQ Scheme
2.3. Robust Code Design
Algorithm 1 S-GDA |
|
3. Two System Cases: Code Design of VQ Scheme
3.1. Codes Design for Lossy Gaussian Source Compression System
3.2. Codes Design for Lossy General Source Compression System
4. Simulation Results and Analyses
4.1. Performance Analyses of Code Design for Gaussian Source
4.2. Performance Analyses of Code Design for General Source
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berger, T.; Gibson, J. Lossy source coding. IEEE Trans. Inform. Theory 1998, 44, 2693–2723. [Google Scholar] [CrossRef]
- Xu, L.D.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Tripathi, S.; De, S. Adaptive multivariate data compression in smart metering internet of things. IEEE Trans. Ind. Inform. 2021, 17, 1287–1297. [Google Scholar] [CrossRef]
- Davey, M.; MacKay, D. Low density parity check codes over gf(q). IEEE Commun. Lett. 1998, 2, 165–167. [Google Scholar] [CrossRef]
- Gallager, R. Low-density parity-check codes. IRE Trans. Inform. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Chen, P. Mesh model-based merging method for DP-LDPC code pair. IEEE Trans. Commun. 2023, 71, 1296–1308. [Google Scholar] [CrossRef]
- Gupta, A.; Verdu, S. Operational duality between lossy compression and channel coding. IEEE Trans. Inform. Theory 2011, 57, 3171–3179. [Google Scholar] [CrossRef]
- Martinian, E.; Wainwright, M. Low density codes achieve the rate-distortion bound. In Proceedings of the Data Compression Conference (DCC’06), Snowbird, UT, USA, 28–30 March 2006; pp. 153–162. [Google Scholar]
- Matsunaga, Y.; Yamamoto, H. A coding theorem for lossy data compression by LDPC codes. IEEE Trans. Inform. Theory 2003, 49, 2225–2229. [Google Scholar] [CrossRef]
- Honda, J.; Yamamoto, H. Variable length lossy coding using an LDPC code. IEEE Trans. Inform. Theory 2014, 60, 762–775. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wu, H.; Liu, S. Performance of lossy P-LDPC codes over GF(2). In Proceedings of the 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS), Adelaide, Australia, 14–16 December 2020; pp. 1–5. [Google Scholar]
- Nguyen, T.V.; Nosratinia, A.; Divsalar, D. The design of rate-compatible protograph LDPC codes. IEEE Trans. Commun. 2012, 60, 2841–2850. [Google Scholar] [CrossRef]
- Mitchell, D.G.M.; Lentmaier, M.; Costello, D.J. Spatially coupled LDPC codes constructed from protographs. IEEE Trans. Inform. Theory 2015, 61, 4866–4889. [Google Scholar] [CrossRef]
- Hu, X.Y.; Eleftheriou, E.; Arnold, D. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inform. Theory 2005, 51, 386–398. [Google Scholar] [CrossRef]
- Braunstein, A.; Kayhan, F.; Montorsi, G.; Zecchina, R. Encoding for the blackwell channel with reinforced belief propagation. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 1891–1895. [Google Scholar]
- Deng, H.; Song, D.; Miao, M.; Wang, L. Design of lossy compression of the gaussian source with protograph LDPC codes. In Proceedings of the 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS), Sydney, Australia, 13–15 December 2021; pp. 1–6. [Google Scholar]
- Song, D.; Ren, J.; Wang, L.; Chen, G. Gaussian source coding based on P-LDPC code. IEEE Trans. Commun. 2023, 71, 1970–1981. [Google Scholar] [CrossRef]
- Ren, J.; Song, D.; Wu, H.; Wang, L. Lossy P-LDPC codes for compressing general sources using neural networks. Entropy 2023, 25, 252–261. [Google Scholar] [CrossRef]
- Fu, Q.; Xie, H.; Qin, Z.; Slabaugh, G.; Tao, X. Vector quantized semantic communication system. IEEE Wirel. Commun. Lett. 2023, 12, 982–986. [Google Scholar] [CrossRef]
- Linde, Y.; Buzo, A.; Gray, R. An algorithm for vector quantizer design. IEEE Trans. Commun. 1980, 28, 84–95. [Google Scholar] [CrossRef]
- Fischer, T.; Dicharry, R. Vector quantizer design for memoryless Gaussian, Gamma, and Laplacian sources. IEEE Trans. Commun. 1984, 32, 1065–1069. [Google Scholar] [CrossRef]
- Equitz, W. A new vector quantization clustering algorithm. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1568–1575. [Google Scholar] [CrossRef]
- Hang, H.M.; Woods, J. Predictive vector quantization of images. IEEE Trans. Commun. 1985, 33, 1208–1219. [Google Scholar] [CrossRef]
- Makhoul, J.; Roucos, S.; Gish, H. Vector quantization in speech coding. Proc. IEEE 1985, 73, 1551–1588. [Google Scholar] [CrossRef]
- Charusaie, M.A.; Amini, A.; Rini, S. Compressibility measures for affinely singular random vectors. IEEE Trans. Inform. Theory 2022, 68, 6245–6275. [Google Scholar] [CrossRef]
- Gersho, A. Asymptotically optimal block quantization. IEEE Trans. Inform. Theory 1979, 25, 373–380. [Google Scholar] [CrossRef]
- Jegou, H.; Douze, M.; Schmid, C. Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhao, S.; Ma, X.; Bai, B. A new joint source-channel coding scheme based on nested lattice codes. IEEE Commun. Lett. 2012, 16, 730–733. [Google Scholar] [CrossRef]
- Hagen, R. Robust LPC spectrum quantization-vector quantization by a linear mapping of a block code. IEEE Trans. Speech Audio Process. 1996, 4, 266–280. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Wu, H.; Wang, L. The efficient design of lossy P-LDPC codes over AWGN channels. Electronics 2022, 11, 3337. [Google Scholar] [CrossRef]
- Farvardin, N.; Vaishampayan, V. Optimal quantizer design for noisy channels: An approach to combined source-channel coding. IEEE Trans. Inform. Theory 1987, 33, 827–838. [Google Scholar] [CrossRef]
- Qi, Y.; Hoshyar, R.; Tafazolli, R. The error-resilient compression of correlated binary sources and exit chart based performance evaluation. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems, York, UK, 19–22 September 2010; pp. 741–745. [Google Scholar]
- Huang, H.C.; Pan, J.S.; Lu, Z.M.; Sun, S.H.; Hang, H.M. Vector quantization based on genetic simulated annealing. Signal Process. 2001, 81, 1513–1523. [Google Scholar] [CrossRef]
- Gersho, A.; Gray, R.M. Vector Quantization and Signal Compression; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 159. [Google Scholar]
- Farvardin, N. A study of vector quantization for noisy channels. IEEE Trans. Inform. Theory 1990, 36, 799–809. [Google Scholar] [CrossRef]
- Abbasfar, A.; Divsalar, D.; Yao, K. Accumulate-repeat-accumulate codes. IEEE Trans. Commun. 2007, 55, 692–702. [Google Scholar] [CrossRef]
- Divsalar, D.; Jones, C.; Dolinar, S.; Thorpe, J. Protograph based LDPC codes with minimum distance linearly growing with block size. In Proceedings of the GLOBECOM’05, IEEE Global Telecommunications Conference, St. Louis, MO, USA, 28 November–2 December 2005; p. 5. [Google Scholar]
- Divsalar, D.; Dolinar, S.; Jones, C.R.; Andrews, K. Capacity-approaching protograph codes. IEEE J. Select. Areas Commun. 2009, 27, 876–888. [Google Scholar] [CrossRef]
R | 0.4 | 0.5 | 0.57 | 0.66 |
---|---|---|---|---|
Codes | ||||
LTS codes [17] | 0.729 | 0.677 | 0.603 | 0.507 |
S-GDA codes | 0.671↓ | 0.600↓ | 0.553↓ | 0.495↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Song, D.; Ren, J.; Wang, L.; Xu, Z. Source Quantization and Coding over Noisy Channel Analysis. Mathematics 2024, 12, 3798. https://doi.org/10.3390/math12233798
Wang R, Song D, Ren J, Wang L, Xu Z. Source Quantization and Coding over Noisy Channel Analysis. Mathematics. 2024; 12(23):3798. https://doi.org/10.3390/math12233798
Chicago/Turabian StyleWang, Runfeng, Dan Song, Jinkai Ren, Lin Wang, and Zhiping Xu. 2024. "Source Quantization and Coding over Noisy Channel Analysis" Mathematics 12, no. 23: 3798. https://doi.org/10.3390/math12233798
APA StyleWang, R., Song, D., Ren, J., Wang, L., & Xu, Z. (2024). Source Quantization and Coding over Noisy Channel Analysis. Mathematics, 12(23), 3798. https://doi.org/10.3390/math12233798