Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines
Abstract
:1. Introduction
1.1. Scheduling Game Description
1.2. Related Works
1.3. Our Study
2. Problem Statement and Notation
2.1. Pure Nash Equilibrium
2.2. Social Optimum
3. Results
3.1. Parametric Bound for the Price of Anarchy
3.2. Fixed Bound for the Price of Anarchy
3.3. Main Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heydenreich, B.; Müller, R.; Uetz, M. Games and mechanism design in machine scheduling - An introduction. Prod. Oper. Manag. 2007, 16, 437–454. [Google Scholar] [CrossRef]
- Rzadca, K.; Trystram, D. Promoting cooperation in selfish computational grids. Eur. J. Oper. Res. 2009, 199, 647–657. [Google Scholar] [CrossRef]
- Averbakh, I. Nash equilibria in competitive project scheduling. Eur. J. Oper. Res. 2010, 205, 552–556. [Google Scholar] [CrossRef]
- Bilò, V.; Flammini, M.; Moscardelli, L. On Nash equilibria in non-cooperative all-optical networks. Algorithms 2021, 14, 15. [Google Scholar] [CrossRef]
- Lu, P.Y.; Yu, C.Y. Worst-case nash equilibria in restricted routing. J. Comput. Sci. Technol. 2012, 27, 710–717. [Google Scholar] [CrossRef]
- Mane, P.C.; Krishnamurthy, N.; Ahuja, K. Formation of stable and efficient social storage cloud. Games 2019, 10, 44. [Google Scholar] [CrossRef]
- Libman, L.; Orda, A. Atomic resource sharing in noncooperative networks. Telecommun. Syst. 2001, 17, 385–409. [Google Scholar] [CrossRef]
- Roughgarden, T.; Tardos, É. How bad is selfish routing? J. ACM 2002, 49, 236–259. [Google Scholar] [CrossRef]
- Bilò, D.; Gualà, L.; Leucci, S.; Proietti, G. Network creation games with traceroute-based strategies. Algorithms 2021, 14, 35. [Google Scholar] [CrossRef]
- Bukvić, L.; Pašagić Škrinjar, J.; Abramović, B.; Zitrický, V. Route selection decision-making in an intermodal transport network using game theory. Sustainability 2021, 13, 4443. [Google Scholar] [CrossRef]
- Oszczypała, M.; Ziółkowski, J.; Małachowski, J.; Lęgas, A. Nash equilibrium and Stackelberg approach for traffic flow optimization in road transportation networks—A case study of Warsaw. Appl. Sci. 2023, 13, 3085. [Google Scholar] [CrossRef]
- Hamers, H.; Klijn, F.; Slikker, M. Implementation of optimal schedules in outsourcing with identical suppliers. Math. Method. Oper. Res. 2019, 89, 173–187. [Google Scholar] [CrossRef]
- Cohen, J.; Pascual, F. Scheduling tasks from selfish multi-tasks agents. In Proceedings of the Euro-Par 2015: Parallel Processing: 21st International Conference on Parallel and Distributed Computing, Vienna, Austria, 24–28 August 2015; Lecture Notes in Computer Science. Träff, J., Hunold, S., Versaci, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9233, pp. 183–195. [Google Scholar] [CrossRef]
- Koutsoupias, E.; Papadimitriou, C. Worst-case equilibria. In Proceedings of the STACS 99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, 4–6 March 1999; Lecture Notes in Computer Science. Meinel, C., Tison, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1563, pp. 404–413. [Google Scholar] [CrossRef]
- Awerbuch, B.; Azar, Y.; Richter, Y.; Tsur, D. Tradeoffs in worst-case equilibria. Theor. Comput. Sci. 2006, 361, 200–209. [Google Scholar] [CrossRef]
- Azar, Y.; Fleischer, L.; Jain, K.; Mirrokni, V.; Svitkina, Z. Optimal coordination mechanisms for unrelated machine scheduling. Oper. Res. 2015, 63, 489–500. [Google Scholar] [CrossRef]
- Bilò, V.; Monaco, G.; Moscardelli, L.; Vinci, C. Nash social welfare in selfish and online load balancing. ACM Trans. Econ. Comput. 2022, 10, 1–41. [Google Scholar] [CrossRef]
- Caragiannis, I.; Flammini, M.; Kaklamanis, C.; Kanellopoulos, P.; Moscardelli, L. Tight bounds for selfish and greedy load balancing. Algorithmica 2011, 61, 606–637. [Google Scholar] [CrossRef]
- Caragiannis, I. Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica 2013, 66, 512–540. [Google Scholar] [CrossRef]
- Caragiannis, I.; Fanelli, A. An almost ideal coordination mechanism for unrelated machine scheduling. Theor. Comput. Syst. 2019, 63, 114–127. [Google Scholar] [CrossRef]
- Chen, C.; Xu, Y. Coordination mechanisms for scheduling selfish jobs with favorite machines. J. Comb. Optim. 2020, 40, 333–365. [Google Scholar] [CrossRef]
- Christodoulou, G.; Koutsoupias, E.; Nanavati, A. Coordination mechanisms. Theor. Comput. Sci. 2009, 410, 3327–3336. [Google Scholar] [CrossRef]
- Czumaj, A.; Vöcking, B. Tight bounds for worst-case equilibria. ACM Trans. Algorithms 2007, 3, 1–17. [Google Scholar] [CrossRef]
- Gairing, M.; Lücking, T.; Mavronicolas, M.; Monien, B. Computing Nash equilibria for scheduling on restricted parallel links. Theor. Comput. Syst. 2010, 47, 405–432. [Google Scholar] [CrossRef]
- Immorlica, N.; Li, L.E.; Mirrokni, V.S.; Schulz, A.S. Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 2009, 410, 1589–1598. [Google Scholar] [CrossRef]
- Yu, L.; She, K.; Gong, H.; Yu, C. Price of anarchy in parallel processing. Inform. Process. Lett. 2010, 110, 288–293. [Google Scholar] [CrossRef]
- Abed, F.; Correa, J.R.; Huang, C.-C. Optimal coordination mechanisms for multi-job scheduling games. In Proceedings of the Algorithms-ESA 2014: 22th Annual European Symposium, Wroclaw, Poland, 8–10 September 2014; Lecture Notes in Computer Science. Schulz, A.S., Wagner, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8737, pp. 13–24. [Google Scholar] [CrossRef]
- Angel, E.; Bampis, E.; Pascual, F.; Thibault, N. Truthfulness for the sum of weighted completion times. In Proceedings of the Computing and Combinatorics—COCOON 2016, Ho Chi Minh City, Vietnam, 2–4 August 2016; Lecture notes in computer science. Dinh, T., Thai, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9797, pp. 15–26. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Im, S.; Kulkarni, J.; Munagala, K. Coordination mechanisms from (almost) all scheduling policies. In Proceedings of the 5th Conference on Innovations in Theoretical Computer Science (ITCS), ACM, New York, NY, USA, 12–14 January 2014; pp. 121–134. [Google Scholar] [CrossRef]
- Braat, J.; Hamers, H.; Klijn, F.; Slikker, M. A selfish allocation heuristic in scheduling: Equilibrium and inefficiency bound analysis. Eur. J. Oper. Res. 2019, 273, 634–645. [Google Scholar] [CrossRef]
- Caragiannis, I.; Gkatzelis, V.; Vinci, C. Coordination mechanisms, cost-sharing, and approximation algorithms for scheduling. In Proceedings of the Web and Internet Economics: 13th International Conference, WINE 2017, Bangalore, India, 17–20 December 2017; Lecture Notes in Computer Science. R. Devanur, N., Lu, P., Eds.; Springer: Cham, Switzerland, 2017; Volume 10660, pp. 74–87. [Google Scholar] [CrossRef]
- Cole, R.; Correa, J.R.; Gkatzelis, V.; Mirrokni, V.; Olver, N. Decentralized utilitarian mechanisms for scheduling games. Games Econ. Behav. 2015, 92, 306–326. [Google Scholar] [CrossRef]
- Correa, J.R.; Queyranne, M. Efficiency of equilibria in restricted uniform machine scheduling with total weighted completion time as social cost. Nav. Res. Logist. 2012, 59, 384–395. [Google Scholar] [CrossRef]
- Hoeksma, R.; Uetz, M. The price of anarchy for utilitarian scheduling games on related machines. Discret. Optim. 2019, 31, 29–39. [Google Scholar] [CrossRef]
- Lee, K.; Leung, J.Y.T.; Pinedo, M.L. Coordination mechanisms for parallel machine scheduling. Eur. J. Oper. Res. 2012, 220, 305–313. [Google Scholar] [CrossRef]
- Rahn, M.; Schäfer, G. Bounding the inefficiency of altruism through social contribution games. In Proceedings of the International Conference on Web and Internet Economics, Cambridge, MA, USA, 11–14 December 2013; Lecture Notes in Computer Science. Chen, Y., Immorlica, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8289, pp. 391–404. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Du, D.; Bai, Q. Improved price of anarchy for machine scheduling games with coordination mechanisms. Optim. Lett. 2019, 13, 949–959. [Google Scholar] [CrossRef]
- Cohen, J.; Dürr, C.; Nguyen Kim, T. Non-clairvoyant scheduling games. Theor. Comput. Syst. 2011, 49, 3–23. [Google Scholar] [CrossRef]
- Aspnes, J.; Azar, Y.; Fiat, A.; Plotkin, S.; Waarts, O. On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 1997, 44, 486–504. [Google Scholar] [CrossRef]
- Cho, Y.; Sahni, S. Bounds for list schedules on uniform processors. SIAM J. Comput. 1980, 9, 91–103. [Google Scholar] [CrossRef]
- Finn, G.; Horowitz, E. A linear time approximation algorithm for multiprocessor scheduling. Bit 1979, 19, 312–320. [Google Scholar] [CrossRef]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Rinooy Kan, A.H.G. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discret. Math. 1979, 5, 287–326. [Google Scholar] [CrossRef]
- Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–21. [Google Scholar]
- Kawaguchi, T.; Kyan, S. Worst case bound of an LRF schedule for the mean weighted flow-time problem. SIAM J. Comput. 1986, 15, 1119–1129. [Google Scholar] [CrossRef]
- Muñoz, F.T.; Parra, M.A. Price of anarchy in uniform parallel machines scheduling game with weighted completion time as social goal. RAIRO-Oper. Res. 2024, 58, 1093–1103. [Google Scholar] [CrossRef]
- Zhou, X.; Rao, W.; Liu, Y.; Sun, S. A decentralized optimization algorithm for multi-agent job shop scheduling with private information. Mathematics 2024, 12, 971. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Lv, D.-Y.; Wang, J.-B. Two-agent slack due-date assignment scheduling with resource allocations and deteriorating jobs. Mathematics 2023, 11, 2737. [Google Scholar] [CrossRef]
- Feng, Q.; Li, S. Algorithms for multi-customer scheduling with outsourcing. Mathematics 2022, 10, 1553. [Google Scholar] [CrossRef]
- Wu, C.-C.; Gupta, J.N.D.; Lin, W.-C.; Cheng, S.-R.; Chiu, Y.-L.; Chen, J.-H.; Lee, L.-Y. Robust scheduling of two-agent customer orders with scenario-dependent component processing times and release dates. Mathematics 2022, 10, 1545. [Google Scholar] [CrossRef]
- Vázquez-Serrano, J.I.; Cárdenas-Barrón, L.E.; Peimbert-García, R.E. Agent scheduling in unrelated parallel machines with sequence- and agent–machine–dependent setup time problem. Mathematics 2021, 9, 2955. [Google Scholar] [CrossRef]
- He, R.; Yuan, J. Two-agent preemptive pareto-scheduling to minimize late work and other criteria. Mathematics 2020, 8, 1517. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, Z.; Yuan, J. Two-agent pareto-scheduling of minimizing total weighted completion time and total weighted late work. Mathematics 2020, 8, 2070. [Google Scholar] [CrossRef]
- Guo, H.; Li, W.; Deng, B. A survey on fair allocation of chores. Mathematics 2023, 11, 3616. [Google Scholar] [CrossRef]
- Eastman, W.L.; Even, S.; Isaacs, I.M. Bounds for the optimal scheduling of n jobs on m processors. Manag. Sci. 1964, 11, 268–279. [Google Scholar] [CrossRef]
- Muñoz, F.T.; Latorre-Núñez, G.; Ramos-Maldonado, M. Developing new bounds for the performance guarantee of the jump neighborhood for scheduling jobs on uniformly related machines. Mathematics 2024, 12, 6. [Google Scholar] [CrossRef]
- Smith, W.E. Various optimizers for single-stage production. Nav. Res. Logist. Q. 1956, 3, 59–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, F.T.; Linfati, R. Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines. Mathematics 2024, 12, 2223. https://doi.org/10.3390/math12142223
Muñoz FT, Linfati R. Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines. Mathematics. 2024; 12(14):2223. https://doi.org/10.3390/math12142223
Chicago/Turabian StyleMuñoz, Felipe T., and Rodrigo Linfati. 2024. "Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines" Mathematics 12, no. 14: 2223. https://doi.org/10.3390/math12142223
APA StyleMuñoz, F. T., & Linfati, R. (2024). Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines. Mathematics, 12(14), 2223. https://doi.org/10.3390/math12142223