A Hybrid Domain Color Image Watermarking Scheme Based on Hyperchaotic Mapping
<p>Attractor projection of Lorenz hyperchaotic system. (<b>a</b>) x-y plane, (<b>b</b>) x-z plane, (<b>c</b>) x-w plane, (<b>d</b>) y-z plane, (<b>e</b>) y-w plane, (<b>f</b>) z-w plane.</p> "> Figure 2
<p>Lorenz chaotic map encryption effect, (<b>d</b>–<b>f</b>) respectively (<b>a</b>–<b>c</b>), corresponding to the histogram.</p> "> Figure 3
<p>Example of discrete wavelet transform: (<b>a</b>) original image; (<b>b</b>) first-order wavelet transform; and (<b>c</b>) second-order wavelet transform.</p> "> Figure 4
<p>Watermark embedding process.</p> "> Figure 5
<p>Watermark extraction process.</p> "> Figure 6
<p>Cover image and watermark image.</p> "> Figure 7
<p>Watermarked image and corresponding extracted watermark image.</p> "> Figure 8
<p>Histogram comparison between cover image and embedded watermark image.</p> "> Figure 9
<p>Attacked cover image.</p> "> Figure 10
<p>Watermark images extracted from different attacks.</p> ">
Abstract
:1. Introduction
- A large-capacity robust image watermarking scheme based on DWT-DCT-SVD is proposed;
- The security of the watermarking algorithm is improved by encrypting Lorenz hyperchaotic map;
- In the YCbCr color space, the Bhattacharyya distance between the cover image and the watermark image is used to adaptively calculate the embedding factor, which solves the balance between the robustness and imperceptibility of the watermark.
2. Background
2.1. Lorenz Hyperchaotic System
2.2. Discrete Wavelet Transform
2.3. Discrete Cosine Transform
2.4. Singular Value Decomposition
2.5. Bhattacharyya Distance
3. The Proposed Watermarking Scheme
3.1. Adaptive Embedding Factor
3.2. Watermark Embedding
3.3. Watermark Extraction
4. Experimental Results and Analysis
4.1. Invisibility Analysis
4.2. Robustness Analysis
4.3. Embedding Capacity Analysis
4.4. Security Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DWT | Discrete wavelet transform |
DCT | Discrete cosine transform |
SVD | Singular value decomposition |
PSNR | Peak signal-to-noise ratio |
SSIM | Structural similarity |
MSE | Mean-squared error |
NCC | Nonlinear correlation coefficient |
EBR | Bit error rate |
References
- Cox, I.J.; Kilian, J.; Leighton, F.T.; Shamoon, T. Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 1997, 6, 1673–1687. [Google Scholar] [CrossRef]
- Nikolaidis, N.; Pitas, I. Robust image watermarking in the spatial domain. Signal Process. 1998, 66, 385–403. [Google Scholar] [CrossRef]
- Song, J.; Song, J.; Bao, Y. A blind digital watermark method based on SVD and chaos. Procedia Eng. 2012, 29, 285–289. [Google Scholar] [CrossRef]
- Kahlessenane, F.; Khaldi, A.; Kafi, M.R.; Euschi, S. A color value differentiation scheme for blind digital image watermarking. Multimed. Tools Appl. 2021, 80, 19827–19844. [Google Scholar] [CrossRef]
- Singh, K.U.; Abu-Hamatta, H.S.; Kumar, A.; Singhal, A.; Rashid, M.; Bashir, A.K. Secure watermarking scheme for color DICOM images in telemedicine applications. Comput. Mater. Contin. 2021, 70, 2525–2542. [Google Scholar]
- Fragoso-Navarro, E.; Cedillo-Hernandez, M.; Nakano-Miyatake, M.; Cedillo-Hernandez, A.; Pérez-Meana, H.M. Visible watermarking assessment metrics based on just noticeable distortion. IEEE Access 2018, 6, 75767–75788. [Google Scholar] [CrossRef]
- Prasanth Vaidya, S.; Chandra Mouli, P.V.S.S.R. Adaptive, robust and blind digital watermarking using Bhattacharyya distance and bit manipulation. Multimed. Tools Appl. 2018, 77, 5609–5635. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Luo, Y.; Cao, L.; Yang, S.; Wei, D.; Zhou, R. An optimized image watermarking method based on HD and SVD in DWT domain. IEEE Access 2019, 7, 80849–80860. [Google Scholar] [CrossRef]
- Mokashi, B.; Bhat, V.S.; Pujari, J.D.; Roopashree, S.; Mahesh, T.R.; Alex, D.S. Efficient hybrid blind watermarking in DWT-DCT-SVD with dual biometric features for images. Contrast Media Mol. Imaging 2022, 2022, 2918126. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, B.K. DWT based color image watermarking using maximum entropy. Multimed. Tools Appl. 2021, 80, 15487–15510. [Google Scholar] [CrossRef]
- Hajjaji, M.A.; Gafsi, M.; Ben Abdelali, A.; Mtibaa, A. FPGA implementation of digital images watermarking system based on discrete Haar wavelet transform. Secur. Commun. Netw. 2019, 2019, 1294267. [Google Scholar] [CrossRef]
- Hamidi, M.; Haziti, M.E.; Cherifi, H.; Hassouni, M.E. Hybrid blind robust image watermarking technique based on DFT-DCT and Arnold transform. Multimed. Tools Appl. 2018, 77, 27181–27214. [Google Scholar] [CrossRef]
- Li, D.; Dai, X.; Gui, J.; Liu, J.; Jin, X. A reversible watermarking for image content authentication based on wavelet transform. Signal Image Video Process. 2024, 18, 2799–2809. [Google Scholar] [CrossRef]
- Hsu, L.Y. AI-assisted deepfake detection using adaptive blind image watermarking. J. Vis. Commun. Image Represent. 2024, 100, 104094. [Google Scholar] [CrossRef]
- Dey, A.; Chowdhuri, P.; Pal, P. Integer wavelet transform based watermarking scheme for medical image authentication. Multimed. Tools Appl. 2024, 1–22. [Google Scholar] [CrossRef]
- Bhinder, P.; Singh, K.; Jindal, N. Robust Image-Adaptive Watermarking Using Hybrid Strength Factors. Wirel. Pers. Commun. 2024, 135, 201–231. [Google Scholar] [CrossRef]
- Hua, Y.; Xi, X.; Qu, C.; Du, J.; Weng, M.; Ye, B. An adaptive watermarking for remote sensing images based on maximum entropy and discrete wavelet transformatio. KSII Trans. Internet Inf. Syst. 2024, 18, 192. [Google Scholar]
- Su, Q.; Sun, Y.; Xia, Y.; Wang, Z. A robust color image watermarking scheme in the fusion domain based on LU factorization. Opt. Laser Technol. 2024, 174, 110726. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, J.; Liu, J.; Bhatti, U.A.; Liu, Z.; Chen, Y.W. Robust zero-watermarking algorithm based on discrete wavelet transform and daisy descriptors for encrypted medical image. CAAI Trans. Intell. Technol. 2024, 9, 40–53. [Google Scholar] [CrossRef]
- Kang, X.B.; Zhao, F.; Lin, G.F.; Chen, Y.J. A novel hybrid of DCT and SVD in DWT domain for robust and invisible blind image watermarking with optimal embedding strength. Multimed. Tools Appl. 2018, 77, 13197–13224. [Google Scholar] [CrossRef]
- Prabha, K.; Sam, I.S. A novel blind color image watermarking based on Walsh Hadamard Transform. Multimed. Tools Appl. 2020, 79, 6845–6869. [Google Scholar] [CrossRef]
- Al-Khedhairi, A.; Elsonbaty, A.; Abdel Kader, A.H.; Elsadany, A.A. Dynamic analysis and circuit implementation of a new 4D Lorenz-type hyperchaotic system. Multimed. Tools Appl. 2019, 2019, 6581586. [Google Scholar] [CrossRef]
- Singh, A.K.; Dave, M.; Mohan, A. Hybrid technique for robust and imperceptible image watermarking in DWT–DCT–SVD domain. Natl. Acad. Sci. Lett. 2014, 37, 351–358. [Google Scholar] [CrossRef]
- Xu, H.; Kang, X.; Wang, Y.; Wang, Y. Exploring robust and blind watermarking approach of colour images in DWT-DCT-SVD domain for copyright protection. Int. J. Electron. Secur. Digit. Forensics 2018, 10, 79–96. [Google Scholar] [CrossRef]
- Choi, E.; Lee, C. Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 2003, 36, 1703–1709. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- PVSSR, C.M. A robust semi-blind watermarking for color images based on multiple decompositions. Multimed. Tools Appl. 2017, 76, 25623–25656. [Google Scholar]
- Roy, S.; Pal, A.K. A hybrid domain color image watermarking based on DWT–SVD. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 201–217. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Liu, X.; Wang, C.; Wang, X. Robust image watermarking algorithm based on QWT and QSVD using 2D Chebyshev-Logistic map. J. Frankl. Inst. 2022, 359, 1755–1781. [Google Scholar] [CrossRef]
- Roy, S.; Pal, A.K. An SVD based location specific robust color image watermarking scheme using RDWT and Arnold scrambling. Wirel. Pers. Commun. 2018, 98, 2223–2250. [Google Scholar] [CrossRef]
- Kang, X.B.; Lin, G.F.; Chen, Y.J.; Zhao, F.; Zhang, E.H.; Jing, C.N. Robust and secure zero-watermarking algorithm for color images based on majority voting pattern and hyper-chaotic encryption. Multimed. Tools Appl. 2020, 79, 1169–1202. [Google Scholar] [CrossRef]
Images | Images | ||
---|---|---|---|
Airplane | 0.0214 | Baboon | 0.0307 |
Goldhill | 0.0381 | House | 0.0245 |
Lake | 0.0398 | Peppers | 0.02368 |
Cover Image | PSNR | NSE | SSIM |
---|---|---|---|
Airplane | 45.3999 | 1.8754 | 0.9980 |
Baboon | 46.1830 | 1.5660 | 0.9994 |
Goldhill | 46.3581 | 1.5041 | 0.9998 |
House | 45.7942 | 1.7126 | 0.9985 |
Lake | 46.0233 | 1.6246 | 0.9986 |
Peppers | 45.8709 | 1.6826 | 0.9985 |
Type of Attack | Airplane | Baboon | Goldhill | House | Lake | Peppers |
---|---|---|---|---|---|---|
No attack | 45.3999 | 46.1830 | 46.3581 | 45.7942 | 46.0233 | 45.8709 |
Salt and pepper noise (m = 0, v = 0.05) | 24.1925 | 24.5199 | 24.2839 | 24.2808 | 24.0658 | 24.0156 |
Gaussian noise (m = 0, v = 0.05) | 21.9604 | 21.1743 | 21.3477 | 21.5720 | 21.6848 | 21.3546 |
Speckle noise (m = 0, v = 0.05) | 23.3501 | 24.2688 | 25.1576 | 23.4628 | 24.6759 | 24.1880 |
Sharpening | 22.7583 | 14.5942 | 21.5463 | 21.0908 | 20.0830 | 22.1108 |
Gaussian filter | 26.6688 | 23.8386 | 26.5525 | 26.2767 | 26.2735 | 26.7413 |
Mean filtering (3 × 3) | 26.3346 | 22.9468 | 26.1975 | 25.8654 | 25.9057 | 26.5179 |
Rotation (10°) | 11.7224 | 13.8714 | 13.6429 | 11.9677 | 11.8750 | 12.4293 |
Flip vertical | 13.3158 | 13.7236 | 11.6019 | 13.3698 | 10.6806 | 11.3423 |
Cropping (20%) | 17.9468 | 18.7958 | 20.9153 | 18.5873 | 18.6055 | 19.2897 |
JPEG (QF = 90) | 27.1407 | 27.2344 | 27.1477 | 27.1401 | 27.0337 | 27.1295 |
JPEG2000 (QF = 90) | 26.1510 | 22.5929 | 25.8521 | 25.3871 | 25.0508 | 26.2070 |
Type of Attack | Airplane | Baboon | Goldhill | House | Lake | Peppers |
---|---|---|---|---|---|---|
No attack | 45.1236 | 46.2937 | 45.9640 | 45.4352 | 45.6023 | 45.6903 |
Salt and pepper noise (m = 0, v = 0.05) | 21.9930 | 18.1367 | 19.5018 | 21.6362 | 22.5985 | 21.0464 |
Gaussian noise (m = 0, v = 0.05) | 16.4985 | 14.8436 | 15.1894 | 15.7981 | 15.2616 | 14.9989 |
Speckle noise (m = 0, v = 0.05) | 17.2991 | 15.6238 | 17.0665 | 18.8839 | 20.6056 | 18.9589 |
Sharpening | 17.8137 | 11.7404 | 13.7391 | 12.2267 | 14.3804 | 16.0217 |
Gaussian filter | 27.1655 | 17.4290 | 20.0078 | 23.2353 | 25.5899 | 27.6140 |
Mean filtering (3 × 3) | 25.4989 | 16.6578 | 19.3077 | 21.6643 | 23.9667 | 25.8653 |
Rotation (10°) | 12.5688 | 11.9637 | 8.9287 | 7.3895 | 10.9374 | 9.4181 |
Flip vertical | 45.1236 | 46.2937 | 45.9640 | 45.4352 | 45.6023 | 45.6903 |
Cropping (20%) | 15.1805 | 12.4529 | 16.8821 | 11.9011 | 10.4191 | 12.3544 |
JPEG (QF = 90) | 40.3817 | 29.1525 | 23.3808 | 35.2028 | 32.7321 | 37.1544 |
JPEG2000 (QF = 90) | 31.1487 | 18.6613 | 19.7050 | 25.8294 | 28.2891 | 30.7598 |
Type of Attack | Airplane | Baboon | Goldhill | House | Lake | Peppers |
---|---|---|---|---|---|---|
No attack | 1 | 1 | 1 | 1 | 1 | 1 |
Salt and pepper noise (m = 0, v = 0.05) | 0.9918 | 0.9971 | 0.9918 | 0.9953 | 0.9962 | 0.9948 |
Gaussian noise (m = 0, v = 0.05) | 0.9146 | 0.9242 | 0.9060 | 0.9193 | 0.9246 | 0.9062 |
Speckle noise (m = 0, v = 0.05) | 0.9822 | 0.9947 | 0.9917 | 0.9915 | 0.9966 | 0.9976 |
Sharpening | 0.9745 | 0.8958 | 0.9562 | 0.9571 | 0.9402 | 0.9694 |
Gaussian filter | 0.9960 | 0.9575 | 0.9928 | 0.9893 | 0.9887 | 0.9959 |
Mean filtering (3 × 3) | 0.9944 | 0.9435 | 0.9898 | 0.9902 | 0.9839 | 0.9942 |
Rotation (10°) | 0.8182 | 0.8715 | 0.8379 | 0.8332 | 0.8844 | 0.9742 |
Flip vertical | 1 | 1 | 1 | 1 | 1 | 1 |
Cropping (20%) | 0.8871 | 0.9636 | 0.9817 | 0.9613 | 0.9009 | 0.9848 |
JPEG (QF = 90) | 0.9986 | 0.9966 | 0.9992 | 0.9999 | 0.9995 | 0.9999 |
JPEG2000 (QF = 90) | 0.9983 | 0.9611 | 0.9951 | 0.9967 | 0.9918 | 0.9983 |
Type of Attack | Airplane | Baboon | Goldhill | House | Lake | Peppers |
---|---|---|---|---|---|---|
No attack | 0 | 0 | 0 | 0 | 0 | 0 |
Salt and pepper noise (m = 0, v = 0.05) | 0.0891 | 0.0926 | 0.0722 | 0.0765 | 0.0704 | 0.0836 |
Gaussian noise (m = 0, v = 0.05) | 0.1713 | 0.1787 | 0.1598 | 0.1564 | 0.1627 | 0.1733 |
Speckle noise (m = 0, v = 0.05) | 0.1389 | 0.1300 | 0.0710 | 0.1108 | 0.0947 | 0.1128 |
Sharpening | 0.1473 | 0.2576 | 0.2059 | 0.1855 | 0.1754 | 0.1623 |
Gaussian filter | 0.0743 | 0.2280 | 0.1116 | 0.1121 | 0.0808 | 0.0640 |
Mean filtering (3 × 3) | 0.0907 | 0.2664 | 0.1356 | 0.1389 | 0.0994 | 0.0772 |
Rotation (10°) | 0.3067 | 0.2979 | 0.3538 | 0.3336 | 0.2471 | 0.2872 |
Flip vertical | 0 | 0 | 0 | 0 | 0 | 0 |
Cropping (20%) | 0.3148 | 0.3278 | 0.1644 | 0.3471 | 0.2956 | 0.2659 |
JPEG (QF = 90) | 0.0075 | 0.0661 | 0.0371 | 0.0165 | 0.0347 | 0.0056 |
JPEG2000 (QF = 90) | 0.0407 | 0.1236 | 0.1381 | 0.0790 | 0.0549 | 0.0432 |
Type of Attack | Proposed | [27] | [28] | [21] | [29] | [30] |
---|---|---|---|---|---|---|
No attack | 1 | 1 | 0.9992 | 1 | 0.9967 | 0.9976 |
Salt and pepper noise (m = 0, v = 0.05) | 0.9971 | 0.9780 | 0.9583 | - | 0.8693 | - |
Gaussian noise (m = 0, v = 0.05) | 0.9242 | 0.9072 | 0.9294 | - | 0.7996 | 0.8339 |
Speckle noise (m = 0, v = 0.05) | 0.9947 | 0.9046 | 0.9625 | 0.9194 | 0.9276 | - |
Sharpening | 0.8958 | - | 0.9385 | 0.9596 | - | 0.8560 |
Gaussian filter | 0.9575 | - | - | 1 | - | 0.8186 |
Mean filtering (3 × 3) | 0.9435 | 0.9420 | 0.9796 | - | 0.9269 | 0.8271 |
Rotation (10°) | 0.8715 | - | - | 0.9569 | - | - |
Cropping (20%) | 0.9636 | 0.9997 | - | 0.9438 | - | - |
JPEG (QF = 90) | 0.9966 | 0.9921 | - | 0.9979 | 0.9948 | 0.94779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Yan, R.; Zhang, Q.; Wu, X. A Hybrid Domain Color Image Watermarking Scheme Based on Hyperchaotic Mapping. Mathematics 2024, 12, 1859. https://doi.org/10.3390/math12121859
Dong Y, Yan R, Zhang Q, Wu X. A Hybrid Domain Color Image Watermarking Scheme Based on Hyperchaotic Mapping. Mathematics. 2024; 12(12):1859. https://doi.org/10.3390/math12121859
Chicago/Turabian StyleDong, Yumin, Rui Yan, Qiong Zhang, and Xuesong Wu. 2024. "A Hybrid Domain Color Image Watermarking Scheme Based on Hyperchaotic Mapping" Mathematics 12, no. 12: 1859. https://doi.org/10.3390/math12121859
APA StyleDong, Y., Yan, R., Zhang, Q., & Wu, X. (2024). A Hybrid Domain Color Image Watermarking Scheme Based on Hyperchaotic Mapping. Mathematics, 12(12), 1859. https://doi.org/10.3390/math12121859