Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
<p>A schematic architecture of Physics-informed Neural Networks (PiNNs). The network digests spatiotemporal coordinates, (<span class="html-italic"><b>x</b></span>,<span class="html-italic">t</span>), as inputs to predict a solution set, <math display="inline"><semantics> <mi mathvariant="italic">s</mi> </semantics></math>, as an approximate to the ground truth solution, <math display="inline"><semantics> <mover accent="true"> <mi mathvariant="italic">s</mi> <mo stretchy="false">^</mo> </mover> </semantics></math>. The automatic differentiation (AD) is then used to generate the derivatives of the predicted solution <math display="inline"><semantics> <mi mathvariant="italic">s</mi> </semantics></math> with respect to inputs. These derivatives are used to formulate the residuals of the governing equations in the loss function weighted by different coefficients. <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> are the learnable parameters for weights/biases and unknown PDE parameters, respectively, that can be learned simultaneously while minimizing the loss function.</p> "> Figure 2
<p>One-dimensional solute transport with a constant velocity field, <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> m/s. The upper panel shows the concentration field predicted by PiNN with <span class="html-italic">sin</span> activation function within the spatiotemporal domain <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics></math> at an injection rate of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> </mrow> </semantics></math> 1 kg/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math>. The lower panels show the comparison of PiNNs’ prediction with the ground truth obtained analytically using Equation (<a href="#FD29-mathematics-12-00063" class="html-disp-formula">29</a>) at three different times. The comparison demonstrates a good agreement yielding <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>=</mo> <mn>1.15</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math> using <span class="html-italic">sin</span> activation function and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>=</mo> <mn>1.21</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math> using <span class="html-italic">tanh</span> activation function for the entire spatiotemporal domain.</p> "> Figure 3
<p>A comparison between the predictions of PiNNs with <span class="html-italic">sin</span> and <span class="html-italic">tanh</span> activation functions and ground truth for solute transport in a 2D domain representing an isotropic porous medium considering <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>D</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>/s, <math display="inline"><semantics> <mrow> <mi mathvariant="bold">u</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.0</mn> <mo>,</mo> <mn>0.0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> m/s, and a solute injection rate of <math display="inline"><semantics> <msub> <mi>C</mi> <mn>0</mn> </msub> </semantics></math> = 0.2 kg/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math> between <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> m and <math display="inline"><semantics> <msub> <mi>y</mi> <mn>2</mn> </msub> </semantics></math> = 0.7 m. The upper panels show the domain with boundary conditions and distributions of randomly selected points on which different terms in the loss function are evaluated. The red dots represent sample collocation points inside the domain corresponding to the loss term associated with the 2D solute transport PDE, and the blue, green, and black dots represent the points on the boundary of the domain corresponding to the loss terms associated with the boundary conditions. The lower panel shows the comparison between the PiNNs’ predictions for the concentration field at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1.00</mn> </mrow> </semantics></math> s and the ground truth obtained analytically using Equation (<a href="#FD33-mathematics-12-00063" class="html-disp-formula">33</a>). The absolute point error shows the mismatch between the solutions, and the total loss plot depicts the difference in the convergence rate of PiNNs.</p> "> Figure 4
<p>A comparison between the prediction of PiNN with <span class="html-italic">sin</span> and <span class="html-italic">tanh</span> activation functions and ground truth obtained analytically for the concentration field considering <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>D</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>/s, <math display="inline"><semantics> <mrow> <mi mathvariant="bold">u</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> m/s, and an injection rate of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> kg/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math> between <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> m and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> m. The upper panels show the predictions of the PiNN with <span class="html-italic">sin</span> activation function at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> </mrow> </semantics></math> 0.25 s, 0.50 s, 0.75 s, and <math display="inline"><semantics> <mrow> <mn>1.00</mn> </mrow> </semantics></math> s. At <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1.00</mn> </mrow> </semantics></math> s, the PiNNs’ predictions are compared with the analytical solution obtained using Equation (<a href="#FD33-mathematics-12-00063" class="html-disp-formula">33</a>). The absolute point error shows the mismatch between the solutions yielding the MSEs reported in <a href="#mathematics-12-00063-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>A comparison between the prediction of the PiNN with <span class="html-italic">sin</span> activation function and the ground truth for the pressure field in a 2D homogeneous porous medium considering <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>D</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> m<math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>2</mn> </msup> <mo>/</mo> </mrow> </semantics></math>s and <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> kg/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math>. The upper panels show the domain with pressure and concentration boundary conditions, as well as the comparison of total loss vs. iteration for PiNNs using <span class="html-italic">sin</span> and <span class="html-italic">tanh</span> activation functions. The lower panels show the comparison between the PiNN’s predictions and ground truth solutions obtained using FEM with <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math> quadrilateral elements for the pressure field, the velocity field in the <span class="html-italic">x</span> direction, and the total velocity field under steady state conditions as well as the concentration field at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1.00</mn> </mrow> </semantics></math> s. The flow direction of the pore fluid is also represented by the streamlines. The absolute point error is also shown for each field to illustrate the mismatch between the solutions.</p> "> Figure 6
<p>Scaled permeability fields selected to possess structural features with different length-scales compared to the domain size. From left to right, i.e., Case 4A, 4B, and 4C, the length-scale of the structural features decreases, leading to more intricate problems to simulate using PiNNs owing to the existence of high-frequency features.</p> "> Figure 7
<p>A comparison of PiNN models using <span class="html-italic">sin</span> and <span class="html-italic">tanh</span> activation functions in predicting the pressure field in heterogeneous porous media, validated against the FEM solution with a <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math> quadrilateral element grid. The comparison is illustrated for the pressure field considering <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>D</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>/s, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mi>ϕ</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>kg/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math>. The absolute point error is also shown for each PiNN model to illustrate the mismatch between the prediction and ground truth solution. The PiNN model with the <span class="html-italic">tanh</span> activation function encounters more difficulty in converging to the ground truth solution as the variation of permeability in the domain increases (i.e., as the length-scale of structural features decreases). In contrast, this issue is less pronounced for the PiNN model with <span class="html-italic">sin</span> activation function.</p> "> Figure 8
<p>A comparison of PiNN models using <span class="html-italic">sin</span> and <span class="html-italic">tanh</span> activation functions to predict the concentration field in heterogeneous porous media, validated against the FEM solution with a <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math> quadrilateral element grid. The comparison is illustrated for the concentration field at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1.00</mn> </mrow> </semantics></math> s considering <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>D</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> m<math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>2</mn> </msup> <mo>/</mo> </mrow> </semantics></math>s, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mi>ϕ</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> kg/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math>. The absolute point error is also shown for each PiNN model to illustrate the mismatch between the predictions and ground truth solutions. The PiNN model with <span class="html-italic">tanh</span> activation function encounters more difficulty in converging to the ground truth solution as the variation of permeability in the domain increases (from left to right). This disparity is attributed to the rapid variation of the velocity field caused by heterogeneities (i.e., as the length-scale of structural features). In contrast, the mismatch is less pronounced for the PiNN model with <span class="html-italic">sin</span> activation function, making it two orders of magnitude more accurate than the PiNN model with <span class="html-italic">tanh</span> activation function.</p> "> Figure 9
<p>A comparison between the PiNN’s predictions (with <span class="html-italic">sin</span> activation function) and ground truth solutions for transient solute transport in a heterogeneous porous medium with the given permeability field, Case 4B. The MSE is calculated using Equation (<a href="#FD24-mathematics-12-00063" class="html-disp-formula">24</a>) for the concentration fields obtained at each given time.</p> ">
Abstract
:1. Introduction
2. Underlying Physics
3. Methodology
4. Computational Experiments
4.1. Case 1: 1D Solute Transport with Constant Velocity
4.2. Case 2: 2D Solute Transport with Constant Velocity
4.3. Case 3: 2D Solute Transport in Homogeneous Porous Media
4.4. Case 4: 2D Solute Transport in Heterogeneous Porous Media
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cook, P.G.; Böhlke, J.K. Determining timescales for groundwater flow and solute transport. In Environmental Tracers in Subsurface Hydrology; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–30. [Google Scholar] [CrossRef]
- Gaus, I.; Audigane, P.; André, L.; Lions, J.; Jacquemet, N.; Durst, P.; Czernichowski-Lauriol, I.; Azaroual, M. Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int. J. Greenh. Gas Control. 2008, 2, 605–625. [Google Scholar] [CrossRef]
- Pruess, K.; Yabusaki, S.; Steefel, C.; Lichtner, P. Fluid flow, heat transfer, and solute transport at nuclear waste storage tanks in the Hanford vadose zone. Vadose Zone J. 2002, 1, 68–88. [Google Scholar] [CrossRef]
- Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta (BBA)-Biomembr. 2006, 1758, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, E.; Hansen, K. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 1999, 45, 147–168. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, Y.; Feng, X. A DFN based 3D numerical approach for modeling coupled groundwater flow and solute transport in fractured rock mass. Int. J. Heat Mass Transf. 2020, 149, 119179. [Google Scholar] [CrossRef]
- Hasan, S.; Niasar, V.; Karadimitriou, N.K.; Godinho, J.R.; Vo, N.T.; An, S.; Rabbani, A.; Steeb, H. Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proc. Natl. Acad. Sci. USA 2020, 117, 23443–23449. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Mazaheri, M. Mathematical model of solute transport in rivers with storage zones using nonlinear dispersion flux approach. Hydrol. Sci. J. 2022, 67, 1656–1668. [Google Scholar] [CrossRef]
- Yang, X.R.; Wang, Y. Ubiquity of anomalous transport in porous media: Numerical evidence, continuous time random walk modelling, and hydrodynamic interpretation. Sci. Rep. 2019, 9, 4601. [Google Scholar] [CrossRef]
- Zhao, Z.; Jing, L.; Neretnieks, I.; Moreno, L. Numerical modeling of stress effects on solute transport in fractured rocks. Comput. Geotech. 2011, 38, 113–126. [Google Scholar] [CrossRef]
- Zhang, Z.h.; Zhang, J.p.; Ju, Z.y.; Zhu, M. A one-dimensional transport model for multi-component solute in saturated soil. Water Sci. Eng. 2018, 11, 236–242. [Google Scholar] [CrossRef]
- Bagalkot, N.; Suresh Kumar, G. Effect of nonlinear sorption on multispecies radionuclide transport in a coupled fracture-matrix system with variable fracture aperture: A numerical study. ISH J. Hydraul. Eng. 2015, 21, 242–254. [Google Scholar] [CrossRef]
- Mostaghimi, P.; Liu, M.; Arns, C.H. Numerical simulation of reactive transport on micro-CT images. Math. Geosci. 2016, 48, 963–983. [Google Scholar] [CrossRef]
- Maheshwari, P.; Ratnakar, R.; Kalia, N.; Balakotaiah, V. 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chem. Eng. Sci. 2013, 90, 258–274. [Google Scholar] [CrossRef]
- Noetinger, B.; Roubinet, D.; Russian, A.; Le Borgne, T.; Delay, F.; Dentz, M.; De Dreuzy, J.R.; Gouze, P. Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale. Transp. Porous Media 2016, 115, 345–385. [Google Scholar] [CrossRef]
- Im, S.; Lee, J.; Cho, M. Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 2021, 385, 114030. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Han, J.; Jentzen, A.; E, W. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, 8505–8510. [Google Scholar] [CrossRef]
- Berg, J.; Nyström, K. A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 2018, 317, 28–41. [Google Scholar] [CrossRef]
- Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375, 1339–1364. [Google Scholar] [CrossRef]
- Faroughi, S.A.; Pawar, N.; Fernandes, C.; Das, S.; Kalantari, N.K.; Mahjour, S.K. Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing. arXiv 2022, arXiv:2211.07377. [Google Scholar] [CrossRef]
- Van Merriënboer, B.; Breuleux, O.; Bergeron, A.; Lamblin, P. Automatic differentiation in ML: Where we are and where we should be going. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Marchine Learn. Res. 2018, 18, 1–43. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: A Navier-Stokes informed deep learning framework for assimilating flow visualization data. arXiv 2018, arXiv:1808.04327. [Google Scholar] [CrossRef]
- Almajid, M.M.; Abu-Al-Saud, M.O. Prediction of porous media fluid flow using physics informed neural networks. J. Pet. Sci. Eng. 2022, 208, 109205. [Google Scholar] [CrossRef]
- Hanna, J.M.; Aguado, J.V.; Comas-Cardona, S.; Askri, R.; Borzacchiello, D. Residual-based adaptivity for two-phase flow simulation in porous media using Physics-informed Neural Networks. Comput. Methods Appl. Mech. Eng. 2022, 396, 115100. [Google Scholar] [CrossRef]
- Haghighat, E.; Amini, D.; Juanes, R. Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training. Comput. Methods Appl. Mech. Eng. 2022, 397, 115141. [Google Scholar] [CrossRef]
- He, Q.; Barajas-Solano, D.; Tartakovsky, G.; Tartakovsky, A.M. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv. Water Resour. 2020, 141, 103610. [Google Scholar] [CrossRef]
- He, Q.; Tartakovsky, A.M. Physics-Informed neural network method for forward and backward advection-dispersion equations. Water Resour. Res. 2021, 57, e2020WR029479. [Google Scholar] [CrossRef]
- Vadyala, S.R.; Betgeri, S.N.; Betgeri, N.P. Physics-informed neural network method for solving one-dimensional advection equation using PyTorch. Array 2022, 13, 100110. [Google Scholar] [CrossRef]
- Rodriguez-Torrado, R.; Ruiz, P.; Cueto-Felgueroso, L.; Green, M.C.; Friesen, T.; Matringe, S.; Togelius, J. Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley–Leverett problem. Sci. Rep. 2022, 12, 7557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Al Kobaisi, M. On the Monotonicity and Positivity of Physics-Informed Neural Networks for Highly Anisotropic Diffusion Equations. Energies 2022, 15, 6823. [Google Scholar] [CrossRef]
- Fuks, O.; Tchelepi, H.A. Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J. Mach. Learn. Model. Comput. 2020, 1, 19–37. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, X.; Liu, P.; Zhang, K.; Han, R.; Wang, S. A physics-informed convolutional neural network for the simulation and prediction of two-phase Darcy flows in heterogeneous porous media. J. Comput. Phys. 2023, 477, 111919. [Google Scholar] [CrossRef]
- Jagtap, A.; Karniadakis, G.E. How important are activation functions in regression and classification? A survey, performance comparison, and future directions. J. Mach. Learn. Model. Comput. 2022, 4, 21–75. [Google Scholar] [CrossRef]
- Parascandolo, G.; Huttunen, H.; Virtanen, T. Taming the waves: Sine as activation function in deep neural networks. In Proceedings of the ICLR 2017 Conference Track, Toulon, France, 24–26 April 2017. [Google Scholar]
- Zhang, C.; Kaito, K.; Hu, Y.; Patmonoaji, A.; Matsushita, S.; Suekane, T. Influence of stagnant zones on solute transport in heterogeneous porous media at the pore scale. Phys. Fluids 2021, 33, 036605. [Google Scholar] [CrossRef]
- Khan, S.; Alhazmi, S.E.; Alotaibi, F.M.; Ferrara, M.; Ahmadian, A. On the Numerical Approximation of Mobile-Immobile Advection-Dispersion Model of Fractional Order Arising from Solute Transport in Porous Media. Fractal Fract. 2022, 6, 445. [Google Scholar] [CrossRef]
- Zhao, X.; Toksoz, M.N. Solute transport in heterogeneous porous media. Mass. Inst. Technol. Earth Resour. Lab. 1994, 145, 151–177. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Alves, W. Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation; Technical Bulletin (USA); United States Department of Agriculture: Washington, DC, USA, 1982. [Google Scholar] [CrossRef]
- Sun, L.; Qiu, H.; Wu, C.; Niu, J.; Hu, B.X. A review of applications of fractional advection–dispersion equations for anomalous solute transport in surface and subsurface water. Wiley Interdiscip. Rev. Water 2020, 7, e1448. [Google Scholar] [CrossRef]
- Haigh, M.; Sun, L.; McWilliams, J.C.; Berloff, P. On eddy transport in the ocean. Part II: The advection tensor. Ocean. Model. 2021, 165, 101845. [Google Scholar] [CrossRef]
- Lou, S.; Chen, S.s.; Lin, B.x.; Yu, J.; Yan, C. Effective high-order energy stable flux reconstruction methods for first-order hyperbolic linear and nonlinear systems. J. Comput. Phys. 2020, 414, 109475. [Google Scholar] [CrossRef]
- Talon, L. On the statistical properties of fluid flows with transitional power-law rheology in heterogeneous porous media. J. Non-Newton. Fluid Mech. 2022, 304, 104789. [Google Scholar] [CrossRef]
- Baioni, E.; Mousavi Nezhad, M.; Porta, G.M.; Guadagnini, A. Modeling solute transport and mixing in heterogeneous porous media under turbulent flow conditions. Phys. Fluids 2021, 33, 106604. [Google Scholar] [CrossRef]
- Berkowitz, B.; Klafter, J.; Metzler, R.; Scher, H. Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. Water Resour. Res. 2002, 38, 9-1–9-12. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Karniadakis, G.E. Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations. Commun. Comput. Phys. 2020, 8, 2002–2041. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What’s next. arXiv 2022, arXiv:2201.05624. [Google Scholar] [CrossRef]
- Depina, I.; Jain, S.; Mar Valsson, S.; Gotovac, H. Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2022, 16, 21–36. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Sitzmann, V.; Martel, J.N.P.; Bergman, A.W.; Lindell, D.B.; Wetzstein, G. Implicit Neural Representations with Periodic Activation Functions. arXiv 2020, arXiv:2006.09661. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving partial differential equations using deep learning and physical constraints. Appl. Sci. 2020, 10, 5917. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2022, 37, 1727–1738. [Google Scholar] [CrossRef]
- Strelow, E.L.; Gerisch, A.; Lang, J.; Pfetsch, M.E. Physics informed neural networks: A case study for gas transport problems. J. Comput. Phys. 2023, 481, 112041. [Google Scholar] [CrossRef]
- Cuomo, S.; Giampaolo, F.; Izzo, S.; Nitsch, C.; Piccialli, F.; Trombetti, C. A physics-informed learning approach to Bernoulli-type free boundary problems. Comput. Math. Appl. 2022, 128, 34–43. [Google Scholar] [CrossRef]
- Shah, K.; Stiller, P.; Hoffmann, N.; Cangi, A. Physics-Informed Neural Networks as Solvers for the Time-Dependent Schrödinger Equation. arXiv 2022, arXiv:2210.12522. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 2000, 12, 1889–1900. [Google Scholar] [CrossRef]
- Kylasa, S.; Roosta, F.; Mahoney, M.W.; Grama, A. GPU accelerated sub-sampled Newton’s method for convex classification problems. In Proceedings of the 2019 SIAM International Conference on Data Mining, SIAM, Calgary, AB, Canada, 2–4 May 2019; pp. 702–710. [Google Scholar] [CrossRef]
- Richardson, A. Seismic full-waveform inversion using deep learning tools and techniques. arXiv 2018, arXiv:1801.07232. [Google Scholar] [CrossRef]
- Olmo, A.; Zamzam, A.; Glaws, A.; King, R. Physics-Driven Convolutional Autoencoder Approach for CFD Data Compressions. arXiv 2022, arXiv:2210.09262. [Google Scholar] [CrossRef]
- Escapil-Inchauspé, P.; Ruz, G.A. Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems. Neurocomputing 2023, 561, 126826. [Google Scholar] [CrossRef]
- Rasht-Behesht, M.; Huber, C.; Shukla, K.; Karniadakis, G.E. Physics-Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023120. [Google Scholar] [CrossRef]
- Zhou, J.G. A lattice Boltzmann method for solute transport. Int. J. Numer. Methods Fluids 2009, 61, 848–863. [Google Scholar] [CrossRef]
- Yu, J.; Lu, L.; Meng, X.; Karniadakis, G.E. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput. Methods Appl. Mech. Eng. 2022, 393, 114823. [Google Scholar] [CrossRef]
- Chiu, P.H.; Wong, J.C.; Ooi, C.; Dao, M.H.; Ong, Y.S. CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method. Comput. Methods Appl. Mech. Eng. 2022, 395, 114909. [Google Scholar] [CrossRef]
- Atmakidis, T.; Kenig, E.Y. A study on the Kelvin-Helmholtz instability using two different computational fluid dynamics methods. J. Comput. Multiph. Flows 2010, 2, 33–45. [Google Scholar] [CrossRef]
Case 1 | Case 2 | |||
---|---|---|---|---|
sin | tanh | sin | tanh | |
Collocation Points, | 5000 | 5000 | 8000 | 8000 |
Weights: , , | 1.0, 1.0, 1.0 | 1.0, 1.0, 0.9 | 1.0, 1.0, 1.0 | 1.0, 1.0, 0.8 |
Accuracy (MSE) | 1.15e-06 | 1.21e-06 | 1.54e-06 | 2.37e-05 |
Training Time (s) |
Case 3 | ||
---|---|---|
sin | tanh | |
Collocation Points, | 12,000 | 12,000 |
Initial and Boundary Loss Weights: , | 1.0, 1.0 | 1.0, 1.0 |
Pressure and Concentrations PDE Loss Weights: , | 1.0, 1.0 | 0.7, 0.9 |
Pressure MSE | 2.84e-06 | 4.36e-05 |
Concentration MSE | 1.22e-06 | 1.51e-05 |
Training Time (s) |
Case 4A | Case 4B | Case 4C | ||||
---|---|---|---|---|---|---|
sin | tanh | sin | tanh | sin | tanh | |
15,000 | 15,000 | 18,000 | 18,000 | 20,000 | 20,000 | |
, | 1.0, 1.0 | 1.0, 1.0 | 1.0, 1.0 | 1.0, 1.0 | 1.0, 1.0 | 1.0, 1.0 |
, | 0.20, 0.70 | 0.25, 0.65 | 0.15, 0.80 | 0.25, 0.70 | 0.15, 0.80 | 0.3, 0.90 |
Pressure MSE | 1.13e-05 | 1.38e-04 | 2.48e-05 | 1.96e-04 | 5.38e-05 | 2.08e-04 |
Concentration MSE | 1.12e-06 | 1.10e-04 | 3.62e-06 | 1.25e-04 | 9.86e-06 | 2.72e-04 |
Training Time (s) |
FEM | PiNN (sin) | Speed-Up Factor | |
---|---|---|---|
(s) | (s) | (—) | |
2D Homogeneous | 1458.7× | ||
2D Heterogeneous-Case 4A | 1402.3× | ||
2D Heterogeneous-Case 4B | 1399.6× | ||
2D Heterogeneous-Case 4C | 1401.9× |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faroughi, S.A.; Soltanmohammadi, R.; Datta, P.; Mahjour, S.K.; Faroughi, S. Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media. Mathematics 2024, 12, 63. https://doi.org/10.3390/math12010063
Faroughi SA, Soltanmohammadi R, Datta P, Mahjour SK, Faroughi S. Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media. Mathematics. 2024; 12(1):63. https://doi.org/10.3390/math12010063
Chicago/Turabian StyleFaroughi, Salah A., Ramin Soltanmohammadi, Pingki Datta, Seyed Kourosh Mahjour, and Shirko Faroughi. 2024. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media" Mathematics 12, no. 1: 63. https://doi.org/10.3390/math12010063
APA StyleFaroughi, S. A., Soltanmohammadi, R., Datta, P., Mahjour, S. K., & Faroughi, S. (2024). Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media. Mathematics, 12(1), 63. https://doi.org/10.3390/math12010063