Enhancing Vessel Segment Extraction in Retinal Fundus Images Using Retinal Image Analysis and Six Sigma Process Capability Index
<p>The process of optimizing the vessel skeletonization and extracting the proper vessel segments (root segments or between bifurcation points, cross sections, or leaf segments).</p> "> Figure 2
<p>Iterative thinning skeletonization.</p> "> Figure 3
<p>Distance-based skeletonization.</p> "> Figure 4
<p>Bi-tangent skeletonization circles.</p> "> Figure 5
<p>Medial axes skeletonization.</p> "> Figure 6
<p>Branch points detection patterns (<b>a</b>) start or end of a segment, CPN = 1. (<b>b</b>) bifurcation point, CPN = 3. (<b>c</b>) crossover point, CPN = 4.</p> "> Figure 7
<p>Skeletonization before removing the spur.</p> "> Figure 8
<p>Tortuosity The inflection count metric is applied on the vessel fragments.</p> "> Figure 9
<p>The process of quantifying the impact of the optimization on (<b>a</b>) the tortuosity measurement process before applying the optimization steps; (<b>b</b>) the tortuosity measurement process After applying the optimization steps.</p> "> Figure 10
<p>Snapshots of the image after each stage: (<b>a</b>) original image. (<b>b</b>) vessel segmentation. (<b>c</b>) detection of intersection points from (<b>d</b>) skeletonized. image (<b>e</b>) identifying the vessel segments. (<b>f</b>) tortuosity measurement.</p> "> Figure 11
<p>Skeletonization before and after removing the spur (<b>a</b>) skeletonization with spur (<b>b</b>) skeletonization with cleaned spur.</p> "> Figure 12
<p>Detecting the pixels that cause breaking of the segment to sub-segments (<b>a</b>) “L” shaped corners in the vessel skeleton as a result of the initial skeleton from the vessel tree using the MATLAB function. (<b>b</b>) Marking the branch points (red square) and the “L” shaped corners (blue cross). (<b>c</b>) Enhanced vessels skeletonization after removing corner pixels from the “L” shape.</p> "> Figure 13
<p>Illustration of a vessel segment extraction in a portion of the retinal image (<b>a</b>) vessel segments extracted before optimization (<b>b</b>) segments after optimization for the same vessel segment.</p> "> Figure 14
<p>The corner pixels from the “L” shapes in vessel segments: (<b>a</b>) existence of ’L’ shape pixels in a specific segment within the skeleton (<b>b</b>) wrong sub-segments generated instead of one segment (<b>c</b>) resolving the root cause (<b>d</b>) the vessel segment localized correctly.</p> "> Figure 15
<p>Generating the vessel segments (<b>a</b>,<b>c</b>) before applying the segment generation improvement in (<b>b</b>,<b>d</b>) after applying the improvement.</p> "> Figure 16
<p>The proposed method enabled a precise segmentation of the vessel segment (<b>a</b>) original image (<b>b</b>) segments extracted before applying the skeletonization improvement method (<b>c</b>) segments obtained after using the skeletonization improved method. The white arrows in the second segmented segments point to the segments that have been wrongly broken, and the researchers’ proposed process has reconnected them and improved the results.</p> "> Figure 17
<p>The proposed method enabled a precise segmentation of the vessel segment (<b>a</b>) original image (<b>b</b>) segments extracted before applying the skeletonization improvement method (<b>c</b>) segments obtained after using the skeletonization-improved method.</p> "> Figure 18
<p>Enhanced skeletonized vessel segment images are generated from the AV Classification dataset and added to the RVM research work-generated datasets.</p> "> Figure 19
<p>Box plot illustrates the fragment extraction optimization impact on the calculation of the vessel segment fragment centerline length.</p> "> Figure 20
<p>Illustration of the fragment extraction enhancement impact on calculating the <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi></mrow></semantics></math> for the 504 retinal images.</p> "> Figure 21
<p>XBar-R chart plot of <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> results for the 504 images (<b>a</b>) before enhancing the vessel extraction and (<b>b</b>) after enhancing the vessel extraction. The two run-charts emphasize that the <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> data before and after vessel enhancement are nonrandom, as the <span class="html-italic">p</span>-the value of the four main types of non-randomness is above 0.05 each.</p> "> Figure 22
<p>Histogram of calculating tortuosity inflection count metric results for the 504 images, (<b>a</b>) before enhancing the vessel extraction (<b>b</b>) after enhancing the vessel extraction.</p> "> Figure 23
<p>Applying the transformation to generate normally distributed bell curve for (<b>a</b>) ’ICMn Before’ the tortuosity data of the vessel segments before being enhanced (<b>b</b>) ’ICMn After’ After enhancing the vessel extraction and calculating the <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> tortuosity values for the segments extracted after the enhancement. The two normally distributed plots emphasize that the <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> data before and after vessel enhancement are normally distributed and ready to proceed in calculating the process capability index.</p> "> Figure 24
<p>Probability plot of calculating tortuosity inflection count metric results for the 504 images, (<b>a</b>) before enhancing the vessel extraction; (<b>b</b>) after enhancing the vessel extraction. The two pp plots emphasize that the <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> data before and after vessel enhancement are normally distributed.</p> "> Figure 25
<p>Run chart plot of <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> results for the 504 images, (<b>a</b>) before enhancing the vessel extraction and (<b>b</b>) after enhancing the vessel extraction. The two run-charts emphasize that the <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> data before and after vessel enhancement are nonrandom as the <span class="html-italic">p</span>-value of each of the four main types of non-randomness is above 0.05.</p> "> Figure 26
<p>Capability report of <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> results for the 504 images, (<b>a</b>) before enhancing the vessel extraction and (<b>b</b>) after enhancing the vessel extraction.</p> "> Figure 27
<p>Illustration of the normal distribution of <math display="inline"><semantics><mrow><mi>I</mi><mi>C</mi><mi>M</mi><mi>n</mi></mrow></semantics></math> (<b>a</b>) before enhancing vessel segments extraction and (<b>b</b>) after enhancing vessel segments extraction.</p> ">
Abstract
:1. Introduction
- Why does skeletonization of the vascular tree break the vessel segments in points, not at a bifurcation or cross-section locations?
- Why are vessel segments cut into several pieces between the connection points?
- How can other researchers be provided with a correctly segmented skeletonized large dataset by expanding the researchers’ previously released AV classification dataset with images that comprise properly segmented vascular segments?
- Proposing an enhanced method to extract each vessel segment in the vessel’s skeleton tree from each intersection point to the next intersection point.
- The improvement of the vessel-segment extraction leads to enhanced vessel-tortuosity calculation.
- The tortuosity calculation improvements were quantified using the six-sigma process capability index, where the tortuosity was calculated for all the vessel segments in all the 504 retinal images twice, once before applying the enhanced method of vessel segments and the second time after enhancing the extracted vessel segments.
- For the first time in the field, this work used the process capability index to measure tortuosity improvement due to improving the process of vessel segment extraction.
- The approach was implemented and evaluated on a robust dataset of 504 retinal images.
- The introduction of a new extension dataset containing vessel segment fragments for the 504 images made available for researchers’ future work.
2. Literature Review
- Tortuosity when the vessel appears in C- or S-shaped elongation;
- Looping when the S- or C-shaped with Multivessel symmetry sign;
- Coiling when the vessel is shaped with 360-degree turns in the vessel itself; and
- Kinking: when it manifests arterial angulation with an acute level.
- Arc to chord ratio methods;
- Curvature-based methods;
- Hybrid item methods.
3. Materials and Method
3.1. Material
3.2. Method
3.2.1. Vessel Segmentation
3.2.2. Vessel Skeletonization and Segments Extraction
3.2.3. Spur Pixels Cleaning
- In the first sub-iteration, delete pixel p if and only if the conditions A1, A2, and A3 are all true;
- In the second sub-iteration, delete pixel p if and only if the conditions A1, A2, and A3’ are all true,
3.2.4. Detection of the Vessel Tree Intersection/Bifurcation Points
3.2.5. Eliminating the False Intersection Points and Segment Extraction
Algorithm 1: Optimization pseudo code for fragment extraction |
3.3. Measuring Retinal Vessel Tortuosity to Quantify the Impact of the Enhanced Vessel Fragments
3.4. Performance Metrics
- Comprehending the foundations of process capability analysis and its corresponding measurements, accumulating the process data, and computing the essential statistics;
- If the data is not normally distributed, apply Box-Cox Transform, as it is a prerequisite to calculation;
- If the data are not normally distributed, apply the Box-Cox Transform, as it is a prerequisite to calculation capability.
4. Results
4.1. Visualization of the Results of the Process Steps
4.2. Vessel segments identification
4.3. Visualization of the Extracted Optimized Segments
4.4. Results of Calculating the Tortuosity before and after the Improvement
4.5. AV Classification Dataset
5. Discussion
5.1. Quantifying the Tortuosity Calculation Improvement
5.1.1. The Impact on the Vessel-Segment Length
5.1.2. The Impact on the Tortuosity Inflection Count Metric
5.2. The Impact on the Process Capability Index of Calculating the ICMn
- The process output must be statistically controlled;
- The distribution of the quality attribute is normal;
- Observations must be random and unrelated to one another.
5.2.1. Verifying the Statistical Stability of the Tortuosity Measurement Processes before and after Optimization
5.2.2. Verifying the Normality Assumption
5.2.3. Verifying the Randomness Assumption
- The trend: is a consistent upward or downward shift in data;
- A mixture: is distinguished by the lack of points along the center line;
- The oscillation: is the data swinging up and down;
- Finally, clusters are collections of connected points on a single side chart center line.
5.3. Process Capability Index-
- 1 Sigma: This sigma level permits 691,462 defects per million chances.
- 2 Sigma: This standard allows for 308,538 defects per million opportunities.
- 3 Sigma: 66,807 defects per million opportunities are permissible at this sigma level.
- 4 Sigma: 6210 defects per one million opportunities are acceptable.
- 5 Sigma: 233 defects are permitted at this sigma level.
- 6 Sigma: 3.4 defects per million opportunities are observed at this level.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AV | Arery-Vein |
AVR | Arteriovenous Ratio |
Process Capability index that indicates how much the process data can fit within | |
the criteria | |
Process Capability index used when the process output distribution is skewed | |
CNN | Convolutional neural network |
DPMO | number of defects that occur per one million opportunities |
DR | Diabetic retinopathy |
HR | Hypertensive retinopathy |
ICM | Inflection Count Metric |
ICMn | Inflection Count Metric normally distributed after applying BoxCox transform |
ICM_before | calculated before the enhancing vessel segments extraction. |
ICM_After | calculated after the enhancing vessel segments extraction. |
ICMn_After | calculated after the enhancing vessel segments extraction. |
ICMn_before | calculated before the enhancing vessel segments extraction. |
Pp | stands for Process Performance; Pp is used when the process output is normally |
distributed. | |
PpK | stands for Process Performance; PpK is used when the distribution of the process |
output is skewed. | |
SWT | Stationary wavelet transform |
SVM | support vector machine |
Yield | The percentage of the defected cases from the overall process output total count |
References
- Hagiwara, Y.; Koh, J.E.W.; Tan, J.H.; Bhandary, S.V.; Laude, A.; Ciaccio, E.J.; Acharya, U.R. Computer-aided diagnosis of glaucoma using fundus images: A review. Comput. Methods Programs Bio-Med. 2018, 165, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ramos, H.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Ruiz-Pinales, J.; Ledesma, S. Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and Expectation Maximization. Appl. Math. Comput. 2018, 339, 568–587. [Google Scholar] [CrossRef]
- Niemeijer, M.; Staal, J.; Van Ginneken, B.; Loog, M.; Abramoff, M.D. Comparative study of retinal vessel segmentation methods on a new publicly available database. Med. Imaging 2004, 5370. [Google Scholar] [CrossRef]
- Dai, P.; Luo, H.; Sheng, H.; Zhao, Y.; Li, L.; Wu, J.; Zhao, Y.; Suzuki, K. A new approach to segment both main and peripheral retinal vessels based on gray-voting and gaussian mixture model. PLoS ONE 2015, 10, e0127748. [Google Scholar] [CrossRef]
- Iqbal, S.; Khan, T.M.; Naveed, K.; Naqvi, S.S.; Nawaz, S.J. Recent trends and advances in fundus image analysis, A review. Comput. Biol. Med. 2022, 151, 106277. [Google Scholar] [CrossRef]
- Badawi, S.A.; Fraz, M.M.; Shehzad, M.; Mahmood, I.; Javed, S.; Mosalam, E.; Nileshwar, A.K. Detection and grading of hypertensive retinopathy using vessels tortuosity and arteriovenous ratio. J. Digit. Imaging 2022, 35, 281–301. [Google Scholar] [CrossRef]
- Mookiah, M.R.K.; Hogg, S.; MacGillivray, T.J.; Prathiba, V.; Pradeepa, R.; Mohan, V.; Anjana, R.M.; Doney, A.S.; Palmer, C.N.A.; Trucco, E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 2021, 68, 101905. [Google Scholar] [CrossRef]
- Rezaee, K.; Haddadnia, J.; Tashk, A. Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Appl. Soft Comput. 2017, 52, 937–951. [Google Scholar] [CrossRef]
- Nergiz, M.; Akın, M. Retinal vessel segmentation via structure tensor coloring and anisotropy enhancement. Symmetry 2017, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Kaba, D.; Salazar-Gonzalez, A.G.; Li, Y.; Liu, X.; Serag, A. Segmentation of retinal blood vessels using gaussian mixture models and expectation maximisation. In Health Information Science: Second International Conference, HIS 2013, London, UK, 25–27 March 2013; Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Durai, B.S.K.; Raja, J.B. A bio-inspired fall webworm optimization algorithm for feature selection and support vector machine optimization for retinal abnormalities detection. Multimed. Tools Appl. 2023, 1–20. [Google Scholar] [CrossRef]
- Barges, E.; Thabet, E. GLDM and Tamura features based KNN and particle swarm optimization for automatic diabetic retinopathy recognition system. Multimed. Tools Appl. 2023, 82, 271–295. [Google Scholar] [CrossRef]
- You, X.; Peng, Q.; Yuan, Y.; Cheung, Y.M.; Lei, J. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 2011, 44, 2314–2324. [Google Scholar] [CrossRef]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, L. Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Khalaf, A.F.; Yassine, I.A.; Fahmy, A.S. Convolutional neural networks for deep feature learning in retinal vessel segmentation. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Oliveira, A.; Pereira, S.; Silva, C.A. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst. Appl. 2018, 112, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wan, W.; Zhang, X.; Liu, S.; Liu, Y.; Liu, H.; Zeng, X.; Wang, W.; Zhang, Q. Segmentation and Automatic Identification of Vasculature in Coronary Angiograms. Comput. Math. Methods Med. 2021, 2021, 2747274. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, Y.; Ma, K.; Duan, Z.; Luo, Z.; Xiao, P.; Yuan, J. Automatic vessel crossing and bifurcation detection based on multi-attention network vessel segmentation and directed graph search. Comput. Biol. Med. 2023, 155, 106647. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Agrawal, S.; Mishro, P.K.; Pachori, R.B. A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial FCM. Comput. Biol. Med. 2022, 147, 105770. [Google Scholar] [CrossRef]
- Badawi, S.A.; Fraz, M.M. Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation. PeerJ 2018, 6, e5855. [Google Scholar] [CrossRef] [Green Version]
- Badawi, S.A.; Fraz, M.M. Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules. BioMed Res. Int. 2019, 2019, 4747230. [Google Scholar] [CrossRef]
- Ouyang, J.; Liu, S.; Peng, H.; Garg, H.; Thanh, D.N. LEA U-Net: A U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation newblock. Complex Intell. Syst. 2023, 1–14. [Google Scholar] [CrossRef]
- Lyu, X.; Cheng, L.; Zhang, S. The reta benchmark for retinal vascular tree analysis newblock. Sci. Data 2022, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wang, B.; Zhang, W.; Luo, C.; Xu, W.; Xu, Z.; Zhang, Y.; Shi, Q.; Zhang, L.; You, Z. Attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation. IEEE J. Biomed. Health Inform. 2020, 25, 2629–2642. [Google Scholar] [CrossRef]
- Chen, C.; Chuah, J.H.; Ali, R.; Wang, Y. Retinal vessel segmentation using deep learning: A review. IEEE Access 2021, 9, 111985–112004. [Google Scholar] [CrossRef]
- Hawas, A.R.; Elsetiha, M.E.; El-Khobby, H.; Ashour, A. Extraction of Blood Vessels Geometric Shape Features with Catheter Localization and Geodesic Distance Transform for Right Coronary Artery Detection. J. Eng. Res. 2023, 7, 162–170. [Google Scholar] [CrossRef]
- U. Oxford. Dictionary—Tortuous. Available online: https://www.lexico.com/en/definition/tortuous (accessed on 5 May 2023).
- Dogra, M.; Dogra, M. Congenital tortuous retinal vessels. Indian J. Ophthalmol. 2019, 67, 277. [Google Scholar] [CrossRef]
- A comparative study between occlusive and non-occlusive retinal vasculitis: Data from a referral center in Tunisia, North Africa. Ocul. Immunol. Inflamm. 2023, 31, 97–104. [CrossRef]
- Sasongko, M.; Wong, T.; Nguyen, T.; Cheung, C.; Shaw, J.; Wang, J. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy. Diabetologia 2011, 54, 2409–2416. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, M.; Chung, H.; Kim, H.C. Quantification of Retinal Vessel Tortuosity in Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Retina 2018, 38, 976–985. [Google Scholar] [CrossRef]
- Cavallari, M.; Stamile, C.; Umeton, R.; Calimeri, F.; Orzi, F. Novel method for automated analysis of retinal images: Results in subjects with hypertensive retinopathy and CADASIL. BioMed Res. Int. 2015, 2015, 752957. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, C.Y.; Tay, W.T.; Mitchell, P.; Wang, J.J.; Hsu, W.; Lee, M.L.; Lau, Q.P.; Zhu, A.L.; Klein, R.; Saw, S.M.; et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure. J. Hypertens. 2011, 29, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.K.; Kylstra, J.A.; Chesnutt, D.A. Prognostic significance of vascular dilation and tortuosity insufficient for plus disease in retinopathy of prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2000, 4, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Gelman, R.; Jiang, L.; Du, Y.E.; Martinez-Perez, M.E.; Flynn, J.T.; Chiang, M.F. Plus disease in retinopathy of prematurity: Pilot study of computer-based and expert diagnosis. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2007, 11, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koreen, S.; Gelman, R.; Martinez-Perez, M.E.; Jiang, L.; Berrocal, A.M.; Hess, D.J.; Flynn, J.T.; Chiang, M.F. Evaluation of a computer-based system for plus disease diagnosis in retinopathy of prematurity. Ophthalmology 2007, 114, e59–e67. [Google Scholar] [CrossRef]
- Yang, M.B. A pilot study using “ROPtool” to quantify plus disease in retinopathy of prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus {JAAPOS} 2007, 11, 630–631. [Google Scholar] [CrossRef]
- Del Corso, L.; Moruzzo, D.; Conte, B.; Agelli, M.; Romanelli, A.M.; Pastine, F.; Protti, M.; Pentimone, F.; Baggiani, G. Tortuosity, kinking, and coiling of the carotid artery: Expression of atherosclerosis or aging? Angiology 1998, 49, 361–371. [Google Scholar] [CrossRef]
- Abdalla, M.; Hunter, A.; Al-Diri, B. Quantifying retinal blood vessels’ tortuosity. In Proceedings of the 2015 Science and Information Conference (SAI), London, UK, 28–30 July 2015. [Google Scholar]
- Kalitzeos, A.A.; Lip, G.Y.; Heitmar, R. Retinal vessel tortuosity measures and their applications. Exp. Eye Res. 2013, 106, 40–46. [Google Scholar] [CrossRef]
- Zaki, W.M.D.W.; Zulkifley, M.A.; Hussain, A.; Halim, W.H.W.; Mustafa, N.B.A.; Ting, L.S. Diabetic retinopathy assessment: Towards an automated system. Biomed. Signal Process. Control. 2016, 24, 72–82. [Google Scholar] [CrossRef]
- Ciurică, S.; Lopez-Sublet, M.; Loeys, B.L.; Radhouani, I.; Natarajan, N.; Vikkula, M.; Maas, A.H.; Adlam, D.; Persu, A. Arterial Tortuosity: Novel Implications for an Old Phenotype. Hypertension 2019, 73, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Mayrhofer-Reinhartshuber, M.; Cornforth, D.J.; Ahammer, H.; Jelinek, H.F. Multiscale analysis of tortuosity in retinal images using wavelets and fractal methods. Pattern Recognit. Lett. 2015, 68, 132–138. [Google Scholar] [CrossRef]
- Blum, H. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form; MIT Press: Cambridge, MA USA, 1967; Volume 19, pp. 362–380. [Google Scholar]
- Guo, Z.; Hall, R.W. Fast fully parallel thinning algorithms. CVGIP Image Underst. 1992, 55, 317–328. [Google Scholar] [CrossRef]
- Saeed, K.; Tabędzki, M.; Rybnik, M.; Adamski, M. K3M: A universal algorithm for image skeletonization and a review of thinning techniques. Int. J. Appl. Math. Comput. 2010, 20, 317–335. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. The scikit-image contributors. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Fisher, R.; Perkins, S.; Walker, A.; Wolfart, E.; Brown, N.; Cammas, N.; Fitzgibbon, A.; Horne, S.; Koryllos, K.; Murdoch, A.; et al. HIPR2: Image Processing Learning Resources. 2005. Available online: http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm (accessed on 5 February 2023).
- Gálvez, A.; Iglesias, A.; Cobo, A.; Puig-Pey, J.; Espinola, J. Bézier curve and surface fitting of 3D point clouds through genetic algorithms, functional networks and least-squares approximation. In Proceedings of the International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 680–693. [Google Scholar]
- Lotmar, W.; Freiburghaus, A.; Bracher, D. Measurement of vessel tortuosity on fundus photographs. Albrecht Graefes Archiv für Klin. Exp. 1979, 211, 49–57. [Google Scholar] [CrossRef]
- Mathworks Documentation 2017. Bwmprh. Available online: https://www.six-sigma-material.com/Tables.html (accessed on 5 May 2023).
- Gonzalez, R.C.; Eddins, S.L.; Woods, R.E. Digital Image Processing Using MATLAB; Prentice Hall, Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Roy, P.K.; Nguyen, U.T.; Bhuiyan, A.; Ramamohanarao, K. An effective automated system for grading severity of retinal arteriovenous nicking in colour retinal images. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6324–6327. [Google Scholar]
- Mahapatra, A.P.K.; Song, J.; Shao, Z.; Dong, T.; Gong, Z.; Paul, B.; Padhy, I. Concept of process capability indices as a tool for process performance measures and its pharmaceutical application. J. Drug Deliv. Ther. 2020, 10, 333–344. [Google Scholar] [CrossRef]
- Balazs, H.I.; Krammer, O.; Géczy, A. Reflow Soldering: Apparatus and Heat Transfer Processes; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wooluru, Y.; Swamy, D.; Nagesh, P. The process capability analysis-a tool for process performance measures and metrics-a case study. Int. J. Qual. Res. 2014, 8, 399–416. [Google Scholar]
- Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley, Aptara, Inc.: Hoboken, NJ, USA, 2020; Printed and Bound by R. R. Donnelley (Jefferson City) & Sons. [Google Scholar]
Skeletonization Methodology and Approach | Topological | Geometrical |
---|---|---|
(1) Distance-based transform | ✓ | |
(2) Voronoi-skeleton | ✓ | ✓ |
(3) Thinning alliteratively | ✓ |
Before Enhancing Vessel Segments Extraction | After Enhancing Vessel Segments Extraction | |||||
---|---|---|---|---|---|---|
Image_No | Segments Count | ICM | ICMn | Segment Count | ICM | ICMn |
102 | 86 | 85.0 | 3.4 | 79 | 305.9 | 2.2 |
110 | 47 | 69.5 | 4.1 | 39 | 134.5 | 2.1 |
114 | 63 | 93.6 | 3.9 | 52 | 217.5 | 2.1 |
139 | 54 | 73.2 | 4.0 | 43 | 227.4 | 2.1 |
140 | 76 | 44.3 | 3.7 | 59 | 110.8 | 2.1 |
271 | 68 | 127.5 | 3.8 | 59 | 226.3 | 2.2 |
309 | 46 | 30.7 | 4.2 | 36 | 112.9 | 2.2 |
ICMn_Before | ICMn_After | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S# | C1 | C2 | C3 | C4 | C5 | X-bar | R | S# | C1 | C2 | C3 | C4 | C5 | X-bar | R | |
1 | 3.1 | 3.1 | 3.4 | 3.3 | 3.9 | 3.35 | 0.80 | 1 | 2.1 | 2.0 | 2.1 | 2.1 | 2.2 | 2.09 | 0.24 | |
2 | 3.3 | 3.8 | 3.2 | 3.0 | 3.4 | 3.34 | 0.75 | 2 | 2.0 | 2.1 | 2.2 | 2.0 | 2.0 | 2.07 | 0.19 | |
3 | 3.3 | 3.3 | 3.0 | 3.3 | 3.3 | 3.26 | 0.31 | 3 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.08 | 0.02 | |
4 | 3.8 | 3.6 | 3.2 | 3.2 | 2.9 | 3.36 | 0.91 | 4 | 2.1 | 2.1 | 2.0 | 2.0 | 2.1 | 2.07 | 0.11 | |
5 | 3.2 | 3.2 | 3.1 | 3.3 | 3.1 | 3.20 | 0.22 | 5 | 2.2 | 2.1 | 2.0 | 2.0 | 2.1 | 2.07 | 0.28 | |
6 | 3.1 | 3.3 | 4.3 | 3.2 | 3.7 | 3.52 | 1.15 | 6 | 2.0 | 2.0 | 2.2 | 2.0 | 2.2 | 2.09 | 0.20 | |
7 | 3.3 | 3.7 | 3.7 | 2.8 | 3.4 | 3.38 | 0.89 | 7 | 2.1 | 2.1 | 2.2 | 2.0 | 2.1 | 2.07 | 0.21 | |
8 | 3.7 | 3.0 | 3.4 | 3.0 | 4.2 | 3.44 | 1.29 | 8 | 2.1 | 2.0 | 2.0 | 2.1 | 2.2 | 2.08 | 0.22 | |
9 | 2.9 | 3.4 | 3.0 | 3.4 | 3.2 | 3.18 | 0.51 | 9 | 2.1 | 2.0 | 1.9 | 2.0 | 2.0 | 2.02 | 0.15 | |
10 | 3.1 | 3.5 | 3.2 | 3.8 | 3.7 | 3.46 | 0.76 | 10 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.08 | 0.13 | |
11 | 3.2 | 3.5 | 3.6 | 3.1 | 3.4 | 3.35 | 0.48 | 11 | 2.1 | 2.0 | 2.1 | 2.0 | 2.1 | 2.06 | 0.08 | |
12 | 3.7 | 3.2 | 3.4 | 2.9 | 3.1 | 3.27 | 0.87 | 12 | 2.1 | 2.1 | 2.0 | 2.0 | 2.0 | 2.02 | 0.11 | |
13 | 2.8 | 4.0 | 3.2 | 2.7 | 3.5 | 3.25 | 1.29 | 13 | 1.9 | 2.1 | 2.1 | 1.9 | 2.0 | 2.01 | 0.25 | |
14 | 3.3 | 4.1 | 2.9 | 3.4 | 3.6 | 3.44 | 1.18 | 14 | 2.0 | 2.2 | 1.9 | 2.1 | 2.1 | 2.07 | 0.30 | |
15 | 3.0 | 3.4 | 3.3 | 3.2 | 3.5 | 3.29 | 0.53 | 15 | 2.0 | 2.1 | 2.0 | 2.1 | 2.1 | 2.06 | 0.16 | |
16 | 3.1 | 3.4 | 3.0 | 3.6 | 3.5 | 3.35 | 0.57 | 16 | 2.1 | 2.2 | 2.0 | 2.0 | 2.1 | 2.07 | 0.16 | |
17 | 3.2 | 3.1 | 3.2 | 3.1 | 3.5 | 3.21 | 0.48 | 17 | 2.2 | 2.1 | 2.0 | 2.2 | 2.1 | 2.14 | 0.24 | |
18 | 3.8 | 3.5 | 3.8 | 3.3 | 3.1 | 3.50 | 0.70 | 18 | 2.1 | 2.1 | 2.1 | 2.2 | 2.1 | 2.09 | 0.10 | |
19 | 3.3 | 3.9 | 3.2 | 3.4 | 3.0 | 3.38 | 0.87 | 19 | 2.1 | 2.1 | 2.0 | 2.1 | 2.0 | 2.06 | 0.15 | |
20 | 3.6 | 3.2 | 3.2 | 3.5 | 2.9 | 3.29 | 0.69 | 20 | 2.0 | 2.2 | 2.1 | 2.1 | 1.9 | 2.06 | 0.21 |
The Process Capability () of Measuring the Tortuosity | Sigma Level | DPMO | Conforming (Yeild%) | |
---|---|---|---|---|
Before vessel segments optimization | 0.89 | 2.7 | 115,000 | 88% |
After vessel segments optimization | 1.46 | 4.39 | 1866 | 99.77% |
Is Process Capable? | Sigma Level | DPMO | Standard Dev Compared to Specification Limits | |
---|---|---|---|---|
Not Capable | 0.33 | 1 | 691,462 | Higher |
0.67 | 2 | 308,538 | ||
Almost Capable | 1 | 3 | 66,807 | Lower |
1.1 | 3.3 | 35,930 | ||
1.2 | 3.6 | 17,864 | ||
1.3 | 3.9 | 8198 | ||
Capable | 1.33 | 4 | 6210 | Lower |
1.47 | 4.4 | 1866 | ||
1.6 | 4.8 | 483 | ||
1.7 | 5 | 233 | ||
1.8 | 5.4 | 48 | ||
2 | 6 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badawi, S.A.; Takruri, M.; ElBadawi, I.; Chaudhry, I.A.; Mahar, N.U.; Nileshwar, A.K.; Mosalam, E. Enhancing Vessel Segment Extraction in Retinal Fundus Images Using Retinal Image Analysis and Six Sigma Process Capability Index. Mathematics 2023, 11, 3170. https://doi.org/10.3390/math11143170
Badawi SA, Takruri M, ElBadawi I, Chaudhry IA, Mahar NU, Nileshwar AK, Mosalam E. Enhancing Vessel Segment Extraction in Retinal Fundus Images Using Retinal Image Analysis and Six Sigma Process Capability Index. Mathematics. 2023; 11(14):3170. https://doi.org/10.3390/math11143170
Chicago/Turabian StyleBadawi, Sufian A., Maen Takruri, Isam ElBadawi, Imran Ali Chaudhry, Nasr Ullah Mahar, Ajay Kamath Nileshwar, and Emad Mosalam. 2023. "Enhancing Vessel Segment Extraction in Retinal Fundus Images Using Retinal Image Analysis and Six Sigma Process Capability Index" Mathematics 11, no. 14: 3170. https://doi.org/10.3390/math11143170
APA StyleBadawi, S. A., Takruri, M., ElBadawi, I., Chaudhry, I. A., Mahar, N. U., Nileshwar, A. K., & Mosalam, E. (2023). Enhancing Vessel Segment Extraction in Retinal Fundus Images Using Retinal Image Analysis and Six Sigma Process Capability Index. Mathematics, 11(14), 3170. https://doi.org/10.3390/math11143170