Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh
<p>Parameterization of the data points. Left: <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math> is the parameter of the initial control point, <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </semantics></math>. Right: <math display="inline"><semantics> <mrow> <msubsup> <mi>t</mi> <mn>1</mn> <mo>*</mo> </msubsup> <mo>,</mo> <msubsup> <mi>t</mi> <mn>2</mn> <mo>*</mo> </msubsup> </mrow> </semantics></math> are the parameters of the new control points, <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mn>3</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mn>3</mn> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, respectively.</p> "> Figure 2
<p>Left: the orange solid line (<math display="inline"><semantics> <mrow> <mi>f</mi> <mfenced> <mi>t</mi> </mfenced> </mrow> </semantics></math>) is a polynomial function through <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </semantics></math>, and the piecewise broken line (<math display="inline"><semantics> <mrow> <msup> <mi>f</mi> <mi>k</mi> </msup> <mfenced> <mi>t</mi> </mfenced> </mrow> </semantics></math>) is a line through <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </semantics></math>. Right: insertion of the new points (<math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mn>3</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mn>3</mn> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </semantics></math>).</p> "> Figure 3
<p>After 1 subdivision, the update of the mask parameters of the subdivision (5). Left: the mask parameters to generate the <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mn>9</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mn>9</mn> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math>. Right: the mask parameters to generate the <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mn>9</mn> <mi>i</mi> <mo>+</mo> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>P</mi> <mrow> <mn>9</mn> <mi>i</mi> <mo>+</mo> <mn>5</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math>.</p> "> Figure 4
<p>Left: notation for the initial mesh (consists of black dots (<math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> </mrow> </semantics></math>), solid lines (<math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>i</mi> </msub> </mrow> </semantics></math>), and light-pink shaded quadrilateral faces (<math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>)) and the new mesh after refinement (consists of <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> </semantics></math> new edge points (purple diamonds), new face points (blue dots), dotted lines, and light-green shaded quadrilateral faces). Right: the mask parameters of the interpolation points in the horizontal and vertical directions.</p> "> Figure 5
<p>Mask parameterization of surface subdivision. Left: global non-uniform parameterization of surface subdivision Right: local non-uniform parameterization of surface subdivision.</p> "> Figure 6
<p>Left: vertex subscript and edge parameter subscript of the initial mesh. Right: edge parameter subscript after two refinement steps.</p> "> Figure 7
<p>Three different types of regions. Left: the region surrounding the face point. Middle: the region surrounding the edge point. Right: the region surrounding the vertex.</p> "> Figure 8
<p>Updating of the mask parameters around the face point after two and three refinement steps. Left: the mask parameters of the face point <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mn>1</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi>F</mi> <mn>2</mn> </msup> </mrow> </semantics></math>. Right: according to (4), the mask parameters are replaced by <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced close="]" open="["> <mrow> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 9
<p>Updating of the mask parameters around the edge point after two subdivisions and three subdivisions. Left: after two subdivisions and three subdivisions, the mask parameters of <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>1</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> </mrow> </semantics></math>. Right: the mask parameters after several subdivisions.</p> "> Figure 10
<p>Left: updating of the mask parameters around the vertex after two subdivisions. Right: the mask parameters around the vertex after <math display="inline"><semantics> <mi>k</mi> </semantics></math> subdivisions.</p> "> Figure 11
<p>Three kinds of patches of the limit surface. Left: three types of limit surface. Right: the schematic diagram of the tensor product regions after 1, 2, 3 and 4 subdivisions.</p> "> Figure 12
<p>Notations for the continuous proof at a regular vertex.</p> "> Figure 13
<p>Notations for the construction of virtual points at an extraordinary point.</p> "> Figure 14
<p>Notations for the construction of new edge points and face points at the extraordinary point. Left: an initial control mesh, where <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mi>j</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math> is the extraordinary point. Right: By generating virtual point <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mi>j</mi> <mi>m</mi> </msubsup> </mrow> </semantics></math>, irregular quadrilateral mesh is transformed into regular mesh.</p> "> Figure 15
<p>The normal vectors at the extraordinary point.</p> "> Figure 16
<p>Subdivision curve with different control polygons. Left: planar control polygon (blue solid line); the red curve is the limit curve with NUFTCS, and the green curve is the real curve. Right: the space control polygon with 40 points, and the limit curve of the space control polygon generated by NUFTCS.</p> "> Figure 17
<p>Subdivision surface of space with NULTISS. Left to right: initial mesh; mesh after three refinements; surface with lighting after three refinements.</p> "> Figure 18
<p>Subdivision surface of space with NULTISS. Left to right: initial mesh; mesh after two refinements; surface with lighting after three refinements.</p> "> Figure 19
<p>Subdivision surface of space with NULTISS. Left to right; initial mesh; mesh after one refinement; mesh after two refinements.</p> ">
Abstract
:1. Introduction
- (1).
- A polynomial-based non-uniform four-point ternary interpolation curve subdivision method is proposed, and we prove that the limit curve of this scheme C1 continuous;
- (2).
- For regular quadrilateral meshes, using four-point ternary curve subdivision and tensor product, we construct a ternary interpolation surface subdivision scheme on non-uniform regular quadrilateral meshes and prove that the limit surface is C1 is continuous at any point;
- (3).
- By constructing virtual points for meshes with extraordinary points, a ternary interpolation method of new edge points and new face points of the extraordinary point is proposed. Due to the lack of an effective method, the convergence and G1 continuity of the limit surface are illustrated by analyzing the change trend of the angles between normal vectors at the extraordinary points.
2. Non-Uniform Four-Point Ternary Curve Subdivision (NUFTCS)
2.1. Parameterization of the Data Points
2.2. Non-Uniform Four-Point Ternary Curve Subdivision (NUFTCS)
2.3. Convergence and Continuity Analysis of NUFTCS
3. Non-Uniform Local Ternary Interpolation Surface Subdivision (NULTISS) on Regular Quadrilateral Mesh
3.1. Non-Uniform Parametric Surface Subdivision
- Calculates the new edge points for each edge, as shown in Figure 4 (left; purple diamonds);
- Calculates the new surface points for each face, as shown in Figure 4 (left; blue dots);
- Constructs a new mesh, as shown in Figure 4 (left; light-green quadrangles).
- Creating new edges: Connecting new edge points on each edge, connecting new edge points with the “nearest” vertex, circularly connecting four new face points, and connecting new face points with the “nearest” new edge points;
- Create new faces: faces surrounded by four new edges.
- ♦
- Vertex points
- ♦
- Edge points
- ♦
- Face points
3.2. Local Parametrization Surface Subdivision
3.3. Convergence and Continuity of NULTISS
- Tensor product regions, as shown in Figure 7 (left);
- Regions augmented across one edge, as shown in Figure 7 (middle);
- Regions augmented around a vertex, as shown in Figure 7 (right).
3.3.1. Parameter Updating Rules
- (1)
- Mask parameter updating rules for interior points in the region are generated by tensor product.
- (2)
- Mask parameter updating rules for points in the region augmented across one edge
- (3)
- Mask parameter updating rules for points in the region augmented around a vertex
3.3.2. Convergence and Continuity of NULTISS
- The surface patch corresponding to the tensor product region (denoted by , i.e., the internal region surrounded by red solid lines);
- The surface patch corresponding to the region augmented across one edge (denoted by , i.e., the internal region surrounded by blue dotted lines);
- The surface patch corresponding to the region augmented around a vertex (denoted by , i.e., the internal region surrounded by green dotted lines).
- If , then
- If , then
4. NULTISS on Irregular Quadrilateral Mesh
4.1. Construction Method of Virtual Points
4.2. Construction of New Edge Points and Face Points of the Extraordinary Point
4.3. The Continuity of NULTISS at the Extraordinary Point
5. Numerical Examples
5.1. Numerical Experiments on Subdivision with UNFTCS
5.2. Numerical Experiments on Subdivision with NULTISS on Regular Quadrilateral Mesh
5.3. Numerical Experiments on Subdivision with NULTISS on Irregular Quadrilateral Mesh
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Catmull, E.; Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 1978, 10, 350–355. [Google Scholar] [CrossRef]
- Doo, D.; Sabin, M. Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 1978, 10, 356–360. [Google Scholar] [CrossRef]
- Kobbelt, L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum 1996, 15, 400–410. [Google Scholar] [CrossRef]
- Li, G.; Ma, W. Interpolatory ternary subdivision surfaces. Comput. Aided Geom. Des. 2006, 23, 45–77. [Google Scholar] [CrossRef]
- Li, G.; Ma, W.; Bao, H. A New Interpolatory Subdivision for Quadrilateral Meshes. Comput. Graph. Forum 2005, 24, 3–16. [Google Scholar] [CrossRef]
- Loop, C. Smooth subdivision surfaces based on triangles. In Curve and Surface Fitting: Saint Malo; Cohen, A., Schumaker, L., Eds.; Nashboro Press: Brentwood, UK, 2002; Volume 12. [Google Scholar]
- Li, G.; Ma, W.; Bao, H. √2-Subdivision for quadrilateral meshes. Vis. Comput. 2004, 20, 180–198. [Google Scholar] [CrossRef]
- Kobbelt, L. √3-Subdivision. In Proceedings of the ACM Computer Graphics (Proceedings of SIGGRAPH ’2000), New Orleans, LA, USA, 23–28 July 2000; pp. 103–112. [Google Scholar]
- Ni, T.; Nasri, A.; Peters, J. Ternary subdivision for quadrilateral meshes. Comput. Aided Geom. Des. 2007, 24, 361–370. [Google Scholar] [CrossRef]
- Chaikin, G. An Algorithm for High-Speed Curve Generation. Comput. Graph. Image Process. 1974, 3, 346–349. [Google Scholar] [CrossRef]
- Dyn, N.; Levin, D.; Gregory, J. A four-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des. 1987, 4, 257–268. [Google Scholar] [CrossRef]
- Dyn, N.; Levin, D. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 1990, 9, 160–169. [Google Scholar] [CrossRef]
- Sederberg, T.W.; Zheng, J.; Sewell, D.; Malcolm, S. Non-Uniform Recursive Subdivision Surfaces. In Proceedings of the ACM Computer Graphics (Proceedings of SIGGRAPH ’98), Orlando, FL, USA, 19–24 July 1998. [Google Scholar]
- Qin, K.; Wang, H. Continuity of non-uniform recursive subdivision surfaces. Sci. China Ser. E 2000, 5, 461–472. [Google Scholar]
- Beccari, C.; Casciola, G.; Romani, L. Non-uniform non-tensor product local interpolatory subdivision surfaces. Comput. Aided Geom. Des. 2013, 30, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chang, Y. Non-uniform interpolatory subdivision surface. Appl. Math. Comput. 2018, 324, 239–253. [Google Scholar] [CrossRef]
- Daubechies, I.; Guskov, I.; Sweldens, W. Regularity of irregular subdivision. Constr. Approx. 1999, 15, 381–426. [Google Scholar] [CrossRef]
- Lee, E. Choosing nodes in parametric curve interpolation. Comput. Aided Des. 1989, 21, 363–370. [Google Scholar] [CrossRef]
- Kuznetsov, E.; Yakimovich, A.Y. The best parameterization for parametric interpolation. J. Comput. Appl. Math. 2006, 191, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.M.; Rehman, A.U.; Baleanu, D.; Nisar, K.S.; Ghaffar, A.; Abdul Karim, S.A. Generalized 5-Point Approximating Subdivision Scheme of Varying Arity. Mathematics 2020, 8, 474. [Google Scholar] [CrossRef] [Green Version]
- Beccari, C.; Casciola, G.; Romani, L. Non-uniform interpolatory curve subdivision with edge parameters built upon compactly supported fundamental splines. BIT Numer. Math. 2011, 51, 781–808. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Ivrissimitzis, I.; Dodgson, N.; Sabin, M. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aided Geom. Des. 2002, 19, 1–18. [Google Scholar] [CrossRef]
- Peng, K.; Tan, J.; Li, Z.; Zhang, L. Fractal behavior of a ternary 4-point rational interpolation subdivision scheme. Math. Comput. Appl. 2018, 23, 65. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, P.; Nawaz, B.; Baleanu, D.; Nisar, K.S.; Ghaffar, A.; Khan, M.; Akram, S. Analysis of Geometric Properties of Ternary Four-Point Rational Interpolating Subdivision Scheme. Mathematics 2020, 8, 338. [Google Scholar] [CrossRef]
- Wang, H.; Kaihuai, Q. Improved Ternary Subdivision Interpolation Scheme. Tsinghua Sci. Technol. 2005, 10, 5. [Google Scholar] [CrossRef]
- Omar, M.; Khan, F. Generalized Subdivision Surface Scheme Based on 2D Lagrange Interpolating Polynomial and its Error Estimation. Commun. Math. Appl. 2018, 9, 447–458. [Google Scholar]
- Beccari, C.; Casciola, G.; Romani, L. Polynomial-based non-uniform interpolatory subdivision with features control. J. Comput. Appl. Math. 2011, 235, 4754–4769. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Yoon, Y.T.; Huh, J.-H. An Efficient Micro Grid Optimization Theory. Mathematics 2020, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.Z.; Zienkiewicz, O.C.; Hinton, E.; Wu, J. A new approach to the development of automatic quadrilateral mesh generation. Int. J. Numer. Methods Eng. 1991, 32, 849–866. [Google Scholar] [CrossRef]
1.5807 | 1.1219 | 0.6724 | 0.2132 | 0.0134 | 0.0062 | |
1.5807 | 1.4567 | 0.9290 | 0.2614 | 0.0241 | 0.0035 | |
1.5807 | 1.5628 | 1.0799 | 0.3132 | 0.0071 | 0.0021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.; Tan, J.; Zhang, L. Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh. Mathematics 2023, 11, 486. https://doi.org/10.3390/math11020486
Peng K, Tan J, Zhang L. Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh. Mathematics. 2023; 11(2):486. https://doi.org/10.3390/math11020486
Chicago/Turabian StylePeng, Kaijun, Jieqing Tan, and Li Zhang. 2023. "Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh" Mathematics 11, no. 2: 486. https://doi.org/10.3390/math11020486
APA StylePeng, K., Tan, J., & Zhang, L. (2023). Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh. Mathematics, 11(2), 486. https://doi.org/10.3390/math11020486