An Optimized Discrete Dragonfly Algorithm Tackling the Low Exploitation Problem for Solving TSP
<p>Static and dynamic dragonfly swarms.</p> "> Figure 2
<p>Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving TSP of 50 cities.</p> "> Figure 3
<p>Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving TSP of 40 cities.</p> "> Figure 4
<p>Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving TSP of 20 cities.</p> "> Figure 5
<p>Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving TSP of 10 cities.</p> "> Figure 6
<p>TSP path provided by optimized discrete adapted DA for 20 locations.</p> ">
Abstract
:1. Introduction
2. Background on Swarm Intelligence, Dragonfly Algorithm, and Hill Climbing Algorithm
2.1. Swarm Intelligence Algorithms
2.2. Dragonfly Algorithm
Algorithm 1: Dragonfly Algorithm |
2.3. Hill Climbing Algorithm
3. Problem Formulation
4. Related Works
4.1. Existing Swarm Intelligence Algorithms Applied to TSP
4.2. Discrete Adapted Dragonfly Algorithm
Algorithm 2: Adapted Discrete DA Algorithm for TSP |
4.3. Initialization
4.4. Calculation of Factors
4.5. Update of Positions
5. Proposed Enhanced Adapted Discrete DA
Algorithm 3: Enhanced Adapted Discrete DA Algorithm for TSP |
5.1. Solution Representation
5.2. Objective Function
5.3. Update of Positions
5.4. Experimental Parameters
6. Experimental Results and Analysis
6.1. Experimental Dataset
6.2. Experimental Setup
6.3. Results and Discussion
6.3.1. Greater Kuala Lumpur TSP Problem
6.3.2. Benchmark TSP Problems
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DA | Dragonfly Algorithm |
TSP | Traveling Salesman Problem |
BDA | Binary Dragonfly Algorithm |
MODA | Multi-Objective Dragonfly Algorithm |
PSO | Particle Swarm Optimization |
ACO | Ant Colony Optimization |
HC | Hill Climbing |
GA | Genetic Algorithm |
GWO | Grey Wolf Optimizer |
XPSO | Expanded PSO |
SO | Swap Operator |
SS | Swap Sequence |
VTPSO | Velocity Tentative PSO |
ABCSS | Artificial Bee Colony with Swap Sequence |
DSMO | Discrete Spider Monkey Optimization |
PSM | Producer Scrounger Method |
References
- Yang, X.S. Nature-Inspired Optimization Algorithms; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence algorithms. IEEE Trans. Ind. Inform. 2017, 14, 1004–1015. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2015, 27, 1053–1073. [Google Scholar] [CrossRef]
- Emambocus, B.A.S.; Jasser, M.B.; Mustapha, A.; Amphawan, A. Dragonfly algorithm and its hybrids: A survey on performance, objectives and applications. Sensors 2021, 21, 7542. [Google Scholar] [CrossRef] [PubMed]
- Gutin, G.; Punnen, A.P. The Traveling Salesman Problem and Its Variations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 12. [Google Scholar]
- Zhi, X.H.; Xing, X.; Wang, Q.; Zhang, L.; Yang, X.; Zhou, C.; Liang, Y. A discrete PSO method for generalized TSP problem. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26–29 August 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 2378–2383. [Google Scholar]
- Yang, J.; Shi, X.; Marchese, M.; Liang, Y. An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 2008, 18, 1417–1422. [Google Scholar] [CrossRef]
- Emambocus, B.A.S.; Jasser, M.B.; Hamzah, M.; Mustapha, A.; Amphawan, A. An enhanced swap sequence-based particle swarm optimization algorithm to solve TSP. IEEE Access 2021, 9, 164820–164836. [Google Scholar] [CrossRef]
- Yao, X.S.; Ou, Y.; Zhou, K.Q. TSP solving utilizing improved ant colony algorithm. J. Phys. Conf. Ser. 2021, 2129, 012026. [Google Scholar] [CrossRef]
- Wei, B.; Xing, Y.; Xia, X.; Gui, L. A novel particle swarm optimization with genetic operator and its application to tsp. Int. J. Cogn. Inform. Nat. Intell. 2021, 15, 1–17. [Google Scholar] [CrossRef]
- Rokbani, N.; Kumar, R.; Abraham, A.; Alimi, A.M.; Long, H.V.; Priyadarshini, I.; Son, L.H. Bi-heuristic ant colony optimization-based approaches for traveling salesman problem. Soft Comput. 2021, 25, 3775–3794. [Google Scholar] [CrossRef]
- Emambocus, B.A.S.; Jasser, M.B.; Amphawan, A. A discrete adapted dragonfly algorithm for solving the traveling salesman problem. In Proceedings of the 2021 Fifth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 20–22 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Spanaki, K.; Karafili, E.; Sivarajah, U.; Despoudi, S.; Irani, Z. Artificial intelligence and food security: Swarm intelligence of AgriTech drones for smart AgriFood operations. Prod. Plan. Control. 2021, 32, 1–19. [Google Scholar] [CrossRef]
- Boveiri, H.R.; Khayami, R.; Elhoseny, M.; Gunasekaran, M. An efficient swarm-intelligence approach for task scheduling in cloud-based internet of things applications. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3469–3479. [Google Scholar] [CrossRef]
- Jahwar, A.; Ahmed, N. Swarm intelligence algorithms in gene selection profile based on classification of microarray data: A review. J. Appl. Sci. Technol. Trends 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci. 2018, 8, 1521. [Google Scholar] [CrossRef] [Green Version]
- Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms 2020, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Emambocus, B.A.S.; Jasser, M.B. Towards an optimized dragonfly algorithm using hill climbing local search to tackle the low exploitation problem. In Proceedings of the 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), Pekan, Malaysia, 24–26 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 306–311. [Google Scholar]
- Yang, J.; Qu, L.; Shen, Y.; Shi, Y.; Cheng, S.; Zhao, J.; Shen, X. Swarm intelligence in data science: Applications, opportunities and challenges. In International Conference on Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–14. [Google Scholar]
- Sun, W.; Tang, M.; Zhang, L.; Huo, Z.; Shu, L. A survey of using swarm intelligence algorithms in IoT. Sensors 2020, 20, 1420. [Google Scholar] [CrossRef] [Green Version]
- Paramanandham, N.; Rajendiran, K. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications. Infrared Phys. Technol. 2018, 88, 13–22. [Google Scholar] [CrossRef]
- Janga Reddy, M.; Nagesh Kumar, D. Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. H2Open J. 2020, 3, 135–188. [Google Scholar] [CrossRef]
- Soni, G.; Jain, V.; Chan, F.T.; Niu, B.; Prakash, S. Swarm intelligence approaches in supply chain management: Potentials, challenges and future research directions. Supply Chain. Manag. Int. J. 2018, 24, 107–123. [Google Scholar] [CrossRef]
- Davendra, D. Traveling Salesman Problem: Theory and Applications; BoD–Books on Demand: Rijeka, Croatia, 2010. [Google Scholar]
- Xu, Y.; Che, C. A brief review of the intelligent algorithm for traveling salesman problem in UAV route planning. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Huang, S.H.; Huang, Y.H.; Blazquez, C.A.; Chen, C.Y. Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm. Adv. Eng. Inform. 2022, 51, 101536. [Google Scholar] [CrossRef]
- Muren; Wu, J.; Zhou, L.; Du, Z.; Lv, Y. Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics. Transp. Res. Part Logist. Transp. Rev. 2019, 126, 87–102. [Google Scholar] [CrossRef]
- Foumani, M.; Moeini, A.; Haythorpe, M.; Smith-Miles, K. A cross-entropy method for optimising robotic automated storage and retrieval systems. Int. J. Prod. Res. 2018, 56, 6450–6472. [Google Scholar] [CrossRef]
- Nedjatia, A.; Vizvárib, B. Robot path planning by traveling salesman problem with circle neighborhood: Modeling, algorithm, and applications. arXiv 2020, arXiv:2003.06712. [Google Scholar]
- Teng, L.; Li, H. Modified discrete firefly algorithm combining genetic algorithm for traveling salesman problem. TELKOMNIKA (Telecommun. Comput. Electron. Control.) 2018, 16, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Han, Y. Discrete sparrow search algorithm for symmetric traveling salesman problem. Appl. Soft Comput. 2022, 118, 108469. [Google Scholar] [CrossRef]
- Sopto, D.S.; Ayon, S.I.; Akhand, M.; Siddique, N. Modified grey wolf optimization to solve traveling salesman problem. In Proceedings of the 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 27–28 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Liu, Y.; Liu, Q.; Tang, Z. A discrete chicken swarm optimization for traveling salesman problem. J. Phys. Conf. Ser. 2021, 1978, 012034. [Google Scholar] [CrossRef]
- Akhand, M.; Ayon, S.I.; Shahriyar, S.; Siddique, N.; Adeli, H. Discrete spider monkey optimization for travelling salesman problem. Appl. Soft Comput. 2020, 86, 105887. [Google Scholar] [CrossRef]
- Wang, K.P.; Huang, L.; Zhou, C.G.; Pang, W. Particle swarm optimization for traveling salesman problem. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), Xi’an, China, 5 November 2003; Volume 3, pp. 1583–1585. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
The position of search agent i | A TSP path, example: 1 3 4 2 1 | |
The step vector of search agent i | A swap sequence, example: | |
The food position | A TSP path, example: 1 4 2 3 1 | |
The enemy position | A TSP path, example: 1 2 4 3 1 | |
The separation factor of the search agent | A swap sequence, example: | |
The alignment factor of the search agent | A swap sequence, example: | |
The cohesion factor of the search agent | A swap sequence, example: | |
The food factor of the search agent | A swap sequence, example: | |
The enemy factor of the search agent | A swap sequence, example: | |
s | The separation weight | A real value, example: 1.5 |
c | The cohesion weight | A real value, example: 1.2 |
a | The alignment weight | A real value, example: 2.3 |
f | The attraction to food weight | A real value, example: 1.2 |
e | The distraction from enemy weight | A real value, example: 0.5 |
w | The step vector weight | A real value, example: 0.1 |
Maximum No. of Iterations | No. of Search Agents | Enhanced SSPSO | Discrete Adapted DA | Proposed Optimized Discrete Adapted DA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | ||
20 | 5 | 532.0 | 0.0359 | 0.0481 | 556.2 | 3.519 | 7.91 | 229.4 | 3.5325 | 6.6253 |
20 | 10 | 550.0 | 0.04071 | 0.1139 | 571.0 | 18.0617 | 27.6912 | 223.3 | 6.9313 | 9.0644 |
20 | 20 | 542.0 | 0.2214 | 0.2959 | 570.7 | 15.7653 | 130.8685 | 223.5 | 25.5084 | 26.5358 |
20 | 40 | 547.0 | 0.1365 | 0.5762 | 546.0 | 2.1136 | 770.9831 | 232.3 | 57.8731 | 58.7077 |
50 | 5 | 525.0 | 0.0892 | 0.3160 | 561.6 | 6.2466 | 54.9875 | 217.2 | 10.734 | 12.7241 |
50 | 10 | 525.0 | 0.0021 | 0.6858 | 539.0 | 3.3454 | 190.3065 | 225.4 | 19.015 | 24.0916 |
50 | 20 | 541.0 | 0.5838 | 1.2465 | 524.0 | 53.0974 | 823.7265 | 211.8 | 64.8796 | 67.1365 |
50 | 40 | 509.0 | 3.3133 | 6.02159 | 542.3 | 587.3994 | 4322.1249 | 206.0 | 147.4982 | 150.3943 |
100 | 5 | 525.0 | 1.0883 | 1.3751 | 537.5 | 6.8421 | 200.1581 | 223.5 | 7.1802 | 18.6268 |
100 | 10 | 510.0 | 0.1848 | 3.7681 | 538.0 | 178.4626 | 788.3791 | 213.7 | 46.6898 | 48.3536 |
100 | 20 | 518.0 | 3.1911 | 9.6636 | 539.2 | 1429.93 | 3302.5555 | 209.4 | 29.4048 | 122.456 |
100 | 40 | 504.0 | 7.3404 | 17.9399 | 534.8 | 426.2547 | 15,899.7002 | 210.6 | 229.6718 | 240.2979 |
200 | 5 | 530.0 | 4.8935 | 6.3373 | 537.0 | 180.8259 | 429.2883 | 217.9 | 48.1498 | 48.6066 |
200 | 10 | 501.0 | 0.7947 | 14.5220 | 529.2 | 798.1125 | 1676.7151 | 206.6 | 59.3682 | 109.5615 |
200 | 20 | 497.0 | 17.5760 | 38.0765 | 527.7 | 4210.0023 | 7259.5666 | 199.4 | 126.6875 | 195.9365 |
200 | 40 | 494.0 | 20.0064 | 82.9766 | 519.5 | 1934.8816 | 34,189.6828 | 206.7 | 324.0921 | 554.3716 |
500 | 5 | 478.0 | 26.4978 | 42.7225 | 519.6 | 504.9482 | 6311.1325 | 213.1 | 96.5744 | 100.8358 |
500 | 10 | 494.0 | 45.6093 | 101.8348 | 487.2 | 17,838.5761 | 26,586.0832 | 196.8 | 121.3713 | 245.6557 |
500 | 20 | 488.0 | 21.9401 | 309.6251 | 517.3 | 16,875.0334 | 113,766.0094 | 193.6 | 262.4892 | 500.1441 |
500 | 40 | 494.0 | 30.9125 | 588.0762 | 507.8 | 283,915.1445 | 546,679.3105 | 200.0 | 534.5106 | 1198.7924 |
Maximum No. of Iterations | No. of Search Agents | Enhanced SSPSO | Discrete Adapted DA | Proposed Optimized Discrete Adapted DA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | ||
20 | 5 | 431.0 | 0.02126 | 0.03446 | 478.1 | 0.13406 | 11.4666 | 217.8 | 2.7567 | 4.3227 |
20 | 10 | 461.0 | 0.02927 | 0.0843 | 463.9 | 1.9294 | 29.2706 | 222.8 | 5.2488 | 5.4381 |
20 | 20 | 442.0 | 0.0140 | 0.1880 | 452.3 | 107.0152 | 131.4918 | 197.2 | 10.0264 | 12.3698 |
20 | 40 | 435.0 | 0.01673 | 0.4016 | 430.6 | 20.2805 | 686.2293 | 188.9 | 29.322 | 36.2265 |
50 | 5 | 448.0 | 0.06111 | 0.1847 | 428.9 | 32.3926 | 65.8366 | 207.3 | 3.9897 | 6.7687 |
50 | 10 | 415.0 | 0.4449 | 0.8789 | 436.8 | 95.0279 | 256.7351 | 195.5 | 12.7688 | 13.4064 |
50 | 20 | 427.0 | 0.1988 | 1.0586 | 449.8 | 87.115 | 1004.6713 | 200.4 | 14.9048 | 28.4775 |
50 | 40 | 418.0 | 1.8880 | 3.1482 | 444.3 | 2194.2967 | 4545.5709 | 194.3 | 65.8466 | 71.1544 |
100 | 5 | 422.0 | 0.0027 | 1.2992 | 422.6 | 114.8649 | 270.0771 | 190.7 | 7.247 | 11.6643 |
100 | 10 | 419.0 | 1.3789 | 3.1608 | 458.0 | 609.6101 | 950.9694 | 193.3 | 20.9147 | 35.4175 |
100 | 20 | 433.0 | 1.6942 | 4.0857 | 444.6 | 2547.628 | 3991.4558 | 185.0 | 40.165 | 49.4274 |
100 | 40 | 407.0 | 1.6516 | 15.0465 | 441.4 | 1860.1602 | 25,521.9187 | 194.0 | 103.962 | 119.8753 |
200 | 5 | 402.0 | 1.4485 | 5.3046 | 422.8 | 1.31 | 361.4874 | 186.8 | 13.2504 | 20.6362 |
200 | 10 | 421.0 | 2.9958 | 11.0945 | 444.0 | 862.4717 | 1301.4488 | 199.8 | 44.9657 | 57.7674 |
200 | 20 | 418.0 | 1.7099 | 22.8645 | 418.6 | 2661.0911 | 5393.6283 | 181.6 | 44.927 | 110.284 |
200 | 40 | 420.0 | 45.7771 | 56.4051 | 436.0 | 6848.2599 | 25,271.4722 | 178.7 | 212.0086 | 257.4372 |
500 | 5 | 421.0 | 30.1391 | 30.2641 | 435.5 | 2122.968 | 7159.2775 | 190.0 | 43.844 | 63.6809 |
500 | 10 | 417.0 | 14.5123 | 93.8408 | 429.8 | 4701.7931 | 23,959.7151 | 185.0 | 85.5298 | 137.7637 |
500 | 20 | 389.0 | 22.4112 | 194.3102 | 423.1 | 100,073.4386 | 124,577.1437 | 184.8 | 182.1964 | 292.4497 |
500 | 40 | 404.0 | 7.1911 | 498.5430 | 409.3 | 72,913.9465 | 357,630.9028 | 179.4 | 501.9859 | 681.6409 |
Maximum No. of Iterations | No. of Search Agents | Enhanced SSPSO | Discrete Adapted DA | Proposed Optimized Discrete Adapted DA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | ||
20 | 5 | 195.0 | 0.004488 | 0.01227 | 191.9 | 2.0448 | 3.8275 | 117.5 | 0.32687 | 1.0266 |
20 | 10 | 173.0 | 0.02451 | 0.0298 | 187.6 | 5.9708 | 14.7066 | 109.1 | 1.7194 | 1.8762 |
20 | 20 | 182.0 | 0.0096 | 0.0752 | 192.7 | 7.3479 | 64.1203 | 107.1 | 2.2349 | 3.5711 |
20 | 40 | 168.0 | 0.09121 | 0.1348 | 186.1 | 18.9694 | 396.1467 | 106.1 | 3.7612 | 6.3904 |
50 | 5 | 173.0 | 0.0035 | 0.0603 | 175.0 | 6.4056 | 24.9236 | 105.4 | 0.63344 | 1.9217 |
50 | 10 | 176.0 | 0.1615 | 0.2060 | 160.1 | 0.0092196 | 97.1998 | 106.1 | 3.8454 | 3.9797 |
50 | 20 | 162.0 | 0.0033 | 0.4717 | 168.9 | 192.3332 | 501.511 | 105.4 | 3.4697 | 6.4025 |
50 | 40 | 151.0 | 1.0569 | 1.4717 | 168.8 | 341.0088 | 2616.6784 | 105.4 | 1.6023 | 16.6091 |
100 | 5 | 171.0 | 0.0048 | 0.2566 | 186.1 | 68.1113 | 125.241 | 108.8 | 1.0233 | 3.0716 |
100 | 10 | 173.0 | 0.2345 | 0.6208 | 171.6 | 269.7031 | 475.5543 | 106.8 | 3.3758 | 5.4659 |
100 | 20 | 167.0 | 0.3571 | 1.9250 | 171.1 | 7.419 | 2047.3412 | 105.7 | 11.401 | 12.6007 |
100 | 40 | 170.0 | 2.0494 | 4.0331 | 174.9 | 5646.5838 | 8242.855 | 105.4 | 1.6434 | 32.2757 |
200 | 5 | 163.0 | 0.9734 | 1.1322 | 180.1 | 89.7254 | 164.0154 | 105.7 | 0.8572 | 6.74 |
200 | 10 | 166.0 | 0.1077 | 3.3940 | 175.4 | 11.5837 | 624.1664 | 105.4 | 3.9401 | 10.1722 |
200 | 20 | 163.0 | 0.0767 | 6.4863 | 162.7 | 202.5637 | 2352.474 | 105.4 | 9.3677 | 21.9359 |
200 | 40 | 155.0 | 0.0475 | 19.5566 | 170.7 | 4165.0315 | 11,489.6363 | 105.4 | 23.7822 | 60.105 |
500 | 5 | 164.0 | 0.0311 | 10.7217 | 163.4 | 875.6302 | 3632.2101 | 105.4 | 9.4902 | 13.2498 |
500 | 10 | 164.0 | 3.2880 | 25.2614 | 175.8 | 1215.4295 | 15,191.4602 | 105.4 | 9.2816 | 30.2117 |
500 | 20 | 153.0 | 0.0044 | 56.4343 | 155.7 | 37,104.5216 | 61,427.5274 | 105.4 | 2.6679 | 64.409 |
500 | 40 | 155.0 | 1.7389 | 111.9266 | 161.9 | 83,639.0656 | 247,067.0486 | 105.4 | 79.663 | 157.4536 |
Maximum No. of Iterations | No. of Search Agents | Enhanced SSPSO | Discrete Adapted DA | Proposed Optimized Discrete Adapted DA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | Cost of Solution (km) | Time Taken to Converge to Optimum (s) | Total Time Taken (s) | ||
20 | 5 | 80.0 | 0.0022 | 0.0028 | 82.9 | 0.50424 | 3.4169 | 65.9 | 0.26697 | 0.56227 |
20 | 10 | 78.0 | 0.0072 | 0.0074 | 71.2 | 4.8409 | 9.6044 | 65.9 | 0.25308 | 0.91832 |
20 | 20 | 75.0 | 0.0055 | 0.0171 | 78.0 | 21.0104 | 35.849 | 65.9 | 0.22486 | 1.2627 |
20 | 40 | 69.0 | 0.0248 | 0.0369 | 79.0 | 0.72344 | 146.1099 | 65.9 | 0.41628 | 2.3977 |
50 | 5 | 75.0 | 0.0124 | 0.01961 | 81.7 | 13.2891 | 15.7673 | 65.9 | 0.12756 | 1.0816 |
50 | 10 | 71.0 | 0.0055 | 0.0440 | 80.2 | 25.3691 | 48.5602 | 65.9 | 0.61573 | 1.4417 |
50 | 20 | 72.0 | 0.0996 | 0.1174 | 73.4 | 13.4782 | 222.6126 | 65.9 | 0.22748 | 2.5893 |
50 | 40 | 67.0 | 0.1659 | 0.2397 | 76.9 | 661.0827 | 915.7478 | 65.9 | 0.37537 | 5.4787 |
100 | 5 | 73.0 | 0.0715 | 0.0733 | 81.3 | 42.137 | 71.0761 | 65.9 | 0.21733 | 1.6297 |
100 | 10 | 72.0 | 0.2668 | 0.2721 | 77.3 | 27.525 | 229.6083 | 65.9 | 0.35535 | 2.3059 |
100 | 20 | 66.0 | 0.4829 | 0.4832 | 76.7 | 102.0761 | 959.875 | 65.9 | 0.22507 | 4.4552 |
100 | 40 | 68.0 | 0.3644 | 0.8834 | 72.1 | 607.6719 | 5944.7225 | 65.9 | 1.1377 | 11.2092 |
200 | 5 | 75.0 | 0.3177 | 0.3179 | 75.8 | 1.117 | 70.7217 | 65.9 | 0.47184 | 3.1885 |
200 | 10 | 65.0 | 0.0234 | 1.080 | 77.5 | 6.5001 | 253.8453 | 65.9 | 0.17053 | 4.7651 |
200 | 20 | 71.0 | 1.7071 | 1.7748 | 72.0 | 372.1562 | 991.3132 | 65.9 | 0.24187 | 8.242 |
200 | 40 | 67.0 | 3.4541 | 4.0137 | 68.8 | 416.1922 | 4307.4956 | 65.9 | 0.56337 | 19.9458 |
500 | 5 | 69.0 | 0.0880 | 2.4140 | 74.7 | 0.59851 | 1637.606 | 65.9 | 0.15524 | 5.3221 |
500 | 10 | 71.0 | 5.7717 | 5.9135 | 69.8 | 502.382 | 6421.5464 | 65.9 | 0.90636 | 9.7569 |
500 | 20 | 68.0 | 12.0173 | 12.7403 | 71.4 | 8413.495 | 28,095.8444 | 65.9 | 0.25608 | 19.0239 |
500 | 40 | 67.0 | 25.6158 | 25.8277 | 69.6 | 8756.6288 | 117,232.4453 | 65.9 | 0.37032 | 47.7772 |
TSP Instance | Cost of Best Solution Obtained | ||||
---|---|---|---|---|---|
Proposed Optimized DA | ACO | GA | PSM | GWO | |
burma14 | 30.8785 | 31.21 | 30.87 | 30.87 | 30.87 |
ulysses16 | 73.9876 | 77.13 | 74.0 | 73.99 | 73.99 |
ulysses22 | 75.3097 | 86.74 | 76.09 | 75.51 | 75.51 |
bays29 | 9074.148 | 9964.78 | 9336.82 | 9076.98 | 9076.98 |
eil51 | 430.244 | 499.92 | 524.18 | 438.7 | 455.24 |
berlin52 | 7544.3659 | 8046.06 | 9184.19 | 8109.91 | 8048.91 |
st70 | 687.0724 | 734.19 | 1015.0 | 767.65 | 752.84 |
eil76 | 566.5564 | 595.58 | 805.78 | 591.89 | 604.32 |
kroA100 | 24,205.4508 | 24,504.9 | 51446.8 | 26,419.8 | 25,983.8 |
TSP Instance | Cost of Best Solution Obtained | ||||
---|---|---|---|---|---|
Proposed Optimized DA | ACO | VTPSO | ABCSS | DSMO | |
burma14 | 30.8785 | 31.21 | 30.87 | 30.87 | 30.87 |
ulysses16 | 73.9876 | 77.13 | 73.99 | 73.99 | 73.99 |
ulysses22 | 75.3097 | 84.78 | 75.31 | 75.31 | 75.31 |
bays29 | 9074.148 | 9964.78 | 9074.15 | 9074.15 | 9074.15 |
eil51 | 430.244 | 499.92 | 429.51 | 428.98 | 428.86 |
berlin52 | 7544.3659 | 7870.45 | 7544.37 | 7544.37 | 7544.37 |
st70 | 687.0724 | 734.19 | 682.57 | 682.57 | 677.11 |
eil76 | 566.5564 | 581.42 | 559.25 | 550.24 | 558.68 |
rat99 | 1298.888 | 1366.3 | 1256.25 | 1242.32 | 1225.56 |
kroA100 | 24,205.4508 | 24,504.9 | 21,307.44 | 21,299.0 | 21,298.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emambocus, B.A.S.; Jasser, M.B.; Amphawan, A.; Mohamed, A.W. An Optimized Discrete Dragonfly Algorithm Tackling the Low Exploitation Problem for Solving TSP. Mathematics 2022, 10, 3647. https://doi.org/10.3390/math10193647
Emambocus BAS, Jasser MB, Amphawan A, Mohamed AW. An Optimized Discrete Dragonfly Algorithm Tackling the Low Exploitation Problem for Solving TSP. Mathematics. 2022; 10(19):3647. https://doi.org/10.3390/math10193647
Chicago/Turabian StyleEmambocus, Bibi Aamirah Shafaa, Muhammed Basheer Jasser, Angela Amphawan, and Ali Wagdy Mohamed. 2022. "An Optimized Discrete Dragonfly Algorithm Tackling the Low Exploitation Problem for Solving TSP" Mathematics 10, no. 19: 3647. https://doi.org/10.3390/math10193647
APA StyleEmambocus, B. A. S., Jasser, M. B., Amphawan, A., & Mohamed, A. W. (2022). An Optimized Discrete Dragonfly Algorithm Tackling the Low Exploitation Problem for Solving TSP. Mathematics, 10(19), 3647. https://doi.org/10.3390/math10193647