Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes
<p>The three-dimensional phase orbits for fractional order chaotic Liu system with the order <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Trajectories of synchronization errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the complex networks (<a href="#FD70-mathematics-10-01928" class="html-disp-formula">70</a>) and (<a href="#FD73-mathematics-10-01928" class="html-disp-formula">73</a>) with eight fractional order nodes with time variance.</p> "> Figure 3
<p>Trajectories of synchronization errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the complex networks (<a href="#FD70-mathematics-10-01928" class="html-disp-formula">70</a>) and (<a href="#FD73-mathematics-10-01928" class="html-disp-formula">73</a>) with eight fractional order nodes with time variance.</p> "> Figure 4
<p>Trajectories of synchronization errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the complex networks (<a href="#FD70-mathematics-10-01928" class="html-disp-formula">70</a>) and (<a href="#FD73-mathematics-10-01928" class="html-disp-formula">73</a>) with eight fractional order nodes with time variance.</p> "> Figure 5
<p>Trajectories of total synchronization errors <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the complex networks (<a href="#FD70-mathematics-10-01928" class="html-disp-formula">70</a>) and (<a href="#FD73-mathematics-10-01928" class="html-disp-formula">73</a>) with eight fractional order nodes with time variance.</p> "> Figure 6
<p>Trajectories of synchronization errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the complex networks (<a href="#FD77-mathematics-10-01928" class="html-disp-formula">77</a>) and (<a href="#FD80-mathematics-10-01928" class="html-disp-formula">80</a>) with 10 fractional order nodes with time variance.</p> "> Figure 7
<p>Trajectories of synchronization errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the complex networks (<a href="#FD77-mathematics-10-01928" class="html-disp-formula">77</a>) and (<a href="#FD80-mathematics-10-01928" class="html-disp-formula">80</a>) with 10 fractional order nodes with time variance.</p> "> Figure 8
<p>Trajectories of synchronization errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the complex networks (<a href="#FD77-mathematics-10-01928" class="html-disp-formula">77</a>) and (<a href="#FD80-mathematics-10-01928" class="html-disp-formula">80</a>) with 10 fractional order nodes with time variance.</p> "> Figure 9
<p>Trajectories of total synchronization error <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the complex networks (<a href="#FD77-mathematics-10-01928" class="html-disp-formula">77</a>) and (<a href="#FD80-mathematics-10-01928" class="html-disp-formula">80</a>) with 10 fractional order nodes with time variance.</p> ">
Abstract
:1. Introduction
2. Fractional-Order Equation and Model Description
2.1. Fractional-Order Derivative and Numerical Method of Differential Equation
2.2. Some Properties of the Fractional Derivative
2.3. Stability of Fractional-Order Nonlinear System
2.4. Instruction of the Complex Dynamical Network with Fractional Order Nodes
3. Method of Synchronization Control for the Complex Network with Fractional-Order Nodes
4. Simulation and Analysis of Fractional Complex Networks
4.1. Synchronization of the Complex Networks with Eight Fractional-Order Nodes of a Chaotic Liu System
4.2. Synchronization of the Complex Dynamical Networks with 10 Fractional Order Nodes of teh Chaotic Lü System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strogatz, S.H. Exploring comples networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, R.; Barabási, A.L. Statistical mechanics of comples networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, G.R. Complex network: Small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 2003, 3, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, M.; Vincenzi, S. Robustness of empirical food webs with varying consumer’s sensitivities to loss of resources. J. Theor. Biol. 2016, 333, C18–C26. [Google Scholar] [CrossRef]
- Pandit, S.A.; Amritkar, R.E. Characterization and control of small-wold network. Phys. Rev. E 1999, 60, 1119–1122. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.H.; Chen, G.R. A time-varying complex dynamical network models and its controlled synchronization criteria. IEEE Trans. Auto. Contr. 2005, 50, 841–846. [Google Scholar]
- Zhou, J.; Lu, J.; Lü, J.H. Adaptive Synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control. 2006, 51, 652–656. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, G.R. Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 2002, 12, 187–192. [Google Scholar] [CrossRef]
- Wu, C. Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying couping. IEEE Trans. Circuits Syst. II 2005, 52, 282–286. [Google Scholar]
- Yu, W.; Cao, J.; Lü, J.H. Global synchronization of linearly hybrid coupled networks with time-varying delay. Siam J. Appl. Dyn. Syst. 2008, 7, 108–133. [Google Scholar] [CrossRef]
- Cao, J.; Li, P.; Wang, W. Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. 2006, 353, 318–325. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, H.J.; Kurths, J. Distributed robust synchronization of dynamical networks with stochastic coupling. IEEE Trans. Circuits Syst. Regul. Pap. 2014, 61, 1508–1519. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Petras, I. Fractional-Oorder Nonlinear Systems: Modeling, Analysis and Simulation; Higher Education Press: Beijing, China, 2011. [Google Scholar]
- Koeller, R.C. Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta Mech. 1986, 58, 251–264. [Google Scholar] [CrossRef]
- Grigorenko, I.; Grigorenko, E. Chaotic Dynamics of the Fractional Lorenz System. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef] [PubMed]
- Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K. Chaos on a fractional Chua’s system. IEEE Trans. Circuits Syst. I 1995, 42, 485–790. [Google Scholar] [CrossRef]
- Li, C.G.; Chen, G.R. Chaos in the fractional-order Chen system and its control. Chaos Solitons Fractals 2005, 22, 549–554. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, Y.B. Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys. Lett. A 2010, 374, 1464–1468. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z.; Fang, J. Ping control of fractional-order weighted complex networks. Chaos 2009, 19, 013112. [Google Scholar] [CrossRef]
- Wu, X.J.; Lu, H.T. Outer synchronization between two different fractional-order general complex dynamical networks. Chin. Phys. D 2010, 19, 070511. [Google Scholar]
- Delshad, S.S.; Asheghan, M.M.; Beheshti, M.H. Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3815–3824. [Google Scholar] [CrossRef]
- Asheghan, M.M.; Miguez, J.; Mohammad, T.H.B.; Tavazoei, M.S. Robust outer synchronization between two complex networks with fractional-order dynamics. Chaos 2011, 21, 033121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.F.; Chen, D.Y.; Do, Y.; Ma, X.Y. Synchronization and anti-synchronization of fractional dynamical networks. J. Vib. Control. 2015, 21, 3383–3402. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.Z. Synchronization of fractional-order complex dynamical networks. Phys. Stat. Mech. Its Appl. D 2015, 428, 1–12. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Li, T.Z. Outer synchronization of fractional-order complex dynamical networks. Optik 2016, 127, 7395–7407. [Google Scholar] [CrossRef]
- Lü, L.; Li, C.; Chen, L. Outer synchronization between uncertain networks with adaptive scaling function and different node numbers. Phys. A 2018, 506, 909–918. [Google Scholar] [CrossRef]
- Du, H. Adaptive open-plus-closed-loop control method of modified function projective synchronization in complex networks. Int. J. Mod. Phys. C 2011, 22, 1393–1407. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P. Time fractional diffusion: A discrete random walk approach. Nonlinear Dyn. 2002, 29, 129–143. [Google Scholar] [CrossRef]
- Yuste, S.; Murillo, J. On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. 2009, 136, 14–25. [Google Scholar]
- Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Slotine, J.J.; Li, W. Applied Nonlinear Control; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Li, T.Z.; Wang, Y.; Yong, Y. Designing synchronization schemes for fractional-order chaoticsystem via a single state fractional-order controller. Optik 2014, 125, 6700–6705. [Google Scholar] [CrossRef]
- Li, T.Z.; Wang, Y.; Luo, M.K. Control of fractional chaotic and hyperchaotic systems based on a fractional-order controller. Chin. Phys. B 2014, 23, 080501. [Google Scholar] [CrossRef]
- Wang, X.J.; Li, J.; Chen, G.R. Chaos in the fractional-order unified system and its synchronization. J. Frankl. Inst. 2008, 345, 392–401. [Google Scholar]
- Sheu, L.J.; Chen, H.K.; Chen, J.H.; Tam, L.M.; Chen, W.C.; Lin, K.T.; Kang, Y. Chaos in the newton-leipnik system with fractional-order. Chaos Solitons Fractals 2008, 36, 98–103. [Google Scholar] [CrossRef]
- Huang, X.; Cao, X.; Ma, Y. Sampled-data exponential synchronization of complex dynamical networks with time-varying delays and TCS fuzzy nodes. Comput. Appl. Math. 2022, 41, 74. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, J.; Yu, X. Bounded Synchronization of Heterogeneous Complex Dynamical Networks: A Unified Approach. IEEE Trans. Autom. Control 2021, 66, 1756–1762. [Google Scholar] [CrossRef]
- Peng, C.C.; Zhang, W.H. Linear feedback synchronization and anti-synchronization of a class of fractional-order chaotic systems based on triangular structure. Eur. Phys. J. Plus 2019, 134, 292. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Srivastava, M.; Das, S. Synchronization of fractional-order chaotic systems using active control method. Chaos Solitons Fractals 2012, 45, 737–752. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, H.; Zhong, S. Cluster synchronization of linearly coupled complex networks via linear and adaptive feedback pinning controls. Nonlinear Dyn. 2017, 88, 859–870. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, C.; Zhong, S. Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control. Chaos Solitons Fractals 2021, 145, 110805. [Google Scholar] [CrossRef]
- Wang, X.Y.; He, Y.J.; Wang, M.J. Chaos control of a fractional-order modified coupled dynamos system. Nolinear Anal. 2009, 71, 6126–6134. [Google Scholar] [CrossRef]
- Chen, L.P.; Chai, Y.; Wu, R.C.; Sun, J.; Ma, T.D. Cluster synchronization in fractional-order complex dynamical networks. Phys. Lett. A 2012, 376, 2381–2388. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, T.; Zhang, Z.; Wang, Y. Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes. Mathematics 2022, 10, 1928. https://doi.org/10.3390/math10111928
Zhang Y, Li T, Zhang Z, Wang Y. Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes. Mathematics. 2022; 10(11):1928. https://doi.org/10.3390/math10111928
Chicago/Turabian StyleZhang, Yifan, Tianzeng Li, Zhiming Zhang, and Yu Wang. 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes" Mathematics 10, no. 11: 1928. https://doi.org/10.3390/math10111928
APA StyleZhang, Y., Li, T., Zhang, Z., & Wang, Y. (2022). Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes. Mathematics, 10(11), 1928. https://doi.org/10.3390/math10111928