Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields
<p>Temperature-dependent photoinduced reflectivity change <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math> of Nb SRF cavity cutout sample. (<b>a</b>) Schematic diagram of pair-breaking mechanism in superconducting Nb with ultrafast optical pump having photon energy <math display="inline"><semantics> <mrow> <mo>ℏ</mo> <mi>ω</mi> <mo>≫</mo> <mn>2</mn> <mi mathvariant="sans-serif">Δ</mi> </mrow> </semantics></math>. Thermal QPs are generated by high-frequency phonon via pair breaking. (<b>b</b>,<b>c</b>) Measured pump–probe <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math> dynamics for 2 mm thick Nb cavity cutout at 2.3 K, 6 K, and 8 K SC states and at 10 K, 12 K, and 15 K normal states above Tc. (<b>d</b>) Superconducting <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <msub> <mi>R</mi> <mrow> <mi>S</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> signals are obtained with subtraction from average normal-state data.</p> "> Figure 2
<p>Temperature-dependent photoinduced reflectivity change <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math> of Nb thin films and QP density of Nb samples. (<b>a</b>,<b>c</b>,<b>e</b>) Temperature-dependent <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math> of Nb thin-film samples from T = 2.2 K to T = 15 K for top figures. (<b>b</b>,<b>d</b>,<b>f</b>) Superconducting state contributions in <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <msub> <mi>R</mi> <mrow> <mi>S</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> components subtracted from average normal stage values for bottom figures. (<b>g</b>) Temperature-dependent equilibrium QP densities of HiPIMS, DC high power, DC LH power, SRF cavity samples. Pump fluence is set to be 3.0 <math display="inline"><semantics> <mo>μ</mo> </semantics></math> J/cm<sup>2</sup>.</p> "> Figure 3
<p>Magnetic-field-dependent <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math> of Nb samples. (<b>left</b>) Nb SRF cavity cutout <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math>: (<b>a</b>) low temperature at T = 2.2 K, (<b>b</b>) normal state at T = 10 K, (<b>c</b>) SC component <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <msub> <mi>R</mi> <mrow> <mi>S</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> subtracted from average 10 K value. (<b>middle</b>) Thin-film Nb HiPIMS <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <mi>R</mi> </mrow> </semantics></math>: (<b>d</b>) low temperature at T = 2.2 K, (<b>e</b>) normal state at T = 10 K, (<b>f</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>R</mi> <mo>/</mo> <msub> <mi>R</mi> <mrow> <mi>S</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> subtraction from average 10 K value. (<b>g</b>) Magnetic-field-dependent thermal-equilibrium QP densities <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>B</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of HiPIMS, DC high, DC LH, and SRF cavity samples. Pump fluence is set to be 3.0 <math display="inline"><semantics> <mo>μ</mo> </semantics></math>J/cm<sup>2</sup>.</p> "> Figure 4
<p>Power-dependent microwave characterization of Nb thin-film resonators. Loss tangent <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mo>(</mo> <mi>δ</mi> <mo>)</mo> </mrow> </semantics></math> power spectra for three selected resonators made with (<b>a</b>) HiPIMS, (<b>b</b>) DC LH, (<b>c</b>) DC high samples. The device power (n) is converted to no. of photons operating at 5 GHz frequency. Different color traces are from different measurement scans. (<b>d</b>) Box plot of averaged loss tangent and (<b>e</b>) averaged internal <math display="inline"><semantics> <msub> <mi>Q</mi> <mi>i</mi> </msub> </semantics></math> of Nb thin-film resonators. Each point in box plots is median value for one measurement, showing variation between different measurement sweeps. Filled points are outlier values far from median values.</p> "> Figure A1
<p>(<b>left</b>) Optical skin depth of Nb with wavelength. (<b>right</b>) Real and imaginary parts of optical constant <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>+</mo> <mi>i</mi> <mi>k</mi> </mrow> </semantics></math> of Nb.</p> "> Figure A2
<p>Peak value of photoinduced QP density Q(T) of Nb DC low–high sample.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Al | aluminum |
fs | femtosecond |
HiPIMS | high-power impulse magnetron sputtering |
HFP | high-frequency phonon |
JJ | Josephson junction |
Nb | niobium |
QP | quasiparticle |
R-T | Rothwarf and Taylor |
SC | superconducting |
SRF | superconducting radio frequency |
TLS | two-level system |
Appendix A
Appendix A.1
Appendix A.2
References
- Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 2021, 6, 875–891. [Google Scholar] [CrossRef]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef]
- Kjaergaard, M.; Schwartz, M.E.; Braumüller, J.; Krantz, P.; Wang, J.I.; Gustavsson, S.; Oliver, W.D. Superconducting Qubits: Current State of Play. Annu. Rev. Condens. Matter. Phys. 2020, 11, 369–395. [Google Scholar] [CrossRef]
- Premkumar, A.; Weil, C.; Hwang, S.; Jäck, B.; Place, A.P.; Waluyo, I.; Hunt, A.; Bisogni, V.; Pelliciari, J.; Barbour, A.; et al. Microscopic relaxation channels in materials for superconducting qubits. Commun. Mater. 2021, 2, 72. [Google Scholar] [CrossRef]
- Blais, A.; Huang, R.S.; Wallraff, A.; Girvin, S.M.; Schoelkopf, R.J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 2004, 69, 062320. [Google Scholar] [CrossRef]
- Oliver, W.D.; Welander, P.B. Materials in superconducting quantum bits. MRS Bull. 2013, 38, 816–825. [Google Scholar] [CrossRef]
- Blais, A.; Grimsmo, A.L.; Girvin, S.M.; Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 2021, 93, 025005. [Google Scholar] [CrossRef]
- Wallraff, A.; Schuster, D.I.; Blais, A.; Frunzio, L.; Huang, R.S.; Majer, J.; Kumar, S.; Girvin, S.M.; Schoelkopf, R.J. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 2004, 431, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Harrelson, T.F.; Sheridan, E.; Kennedy, E.; Vinson, J.; N’Diaye, A.T.; Altoé, M.V.P.; Schwartzberg, A.; Siddiqi, I.; Ogletree, D.F.; Scott, M.C.; et al. Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films. Appl. Phys. Lett. 2021, 119, 244004. [Google Scholar] [CrossRef]
- Carroll, M.; Rosenblatt, S.; Jurcevic, P.; Lauer, I.; Kandala, A. Dynamics of superconducting qubit relaxation times. npj Quantum Inf. 2022, 8, 132. [Google Scholar] [CrossRef]
- Zhang, E.J.; Srinivasan, S.; Sundaresan, N.; Bogorin, D.F.; Martin, Y.; Hertzberg, J.B.; Timmerwilke, J.; Pritchett, E.J.; Yau, J.B.; Wang, C.; et al. High-performance superconducting quantum processors via laser annealing of transmon qubit. Sci. Adv. 2022, 8, eabi6690. [Google Scholar] [CrossRef] [PubMed]
- Bravyi, S.; Dial, O.; Gambetta, J.M.; Gil, D.; Nazario, Z. The future of quantum computing with superconducting qubits. J. Appl. Phys. 2022, 132, 160902. [Google Scholar] [CrossRef]
- Smirnov, N.S.; Krivko, E.A.; Solovyova, A.A.; Ivanov, A.I.; Rodionov, I.A. Wiring surface loss of a superconducting transmon qubit. Sci. Rep. 2024, 14, 7326. [Google Scholar] [CrossRef] [PubMed]
- Verjauw, J.; Acharya, R.; Van Damme, J.; Ivanov, T.; Lozano, D.P.; Mohiyaddin, F.A.; Wan, D.; Jussot, J.; Vadiraj, A.M.; Mongillo, M.; et al. Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms. npj Quantum Inf. 2022, 8, 93. [Google Scholar] [CrossRef]
- De Graaf, S.E.; Faoro, L.; Ioffe, L.B.; Mahashabde, S.; Burnett, J.J.; Lindström, T.; Kubatkin, S.E.; Danilov, A.V.; Tzalenchuk, A.Y. Two-level systems in superconducting quantum devices due to trapped quasiparticles. Sci. Adv. 2020, 6, eabc5055. [Google Scholar] [CrossRef]
- Müller, C.; Cole, J.H.; Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits. Rep. Prog. Phys. 2019, 82, 124501. [Google Scholar] [CrossRef] [PubMed]
- Ristè, D.; Bultink, C.C.; Tiggelman, M.J.; Schouten, R.N.; Lehnert, K.W.; DiCarlo, L. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit. Nat. Commun. 2013, 4, 1913. [Google Scholar] [CrossRef]
- Vepsäläinen, A.P.; Karamlou, A.H.; Orrell, J.L.; Dogra, A.S.; Loer, B.; Vasconcelos, F.; Kim, D.K.; Melville, A.J.; Niedzielski, B.M.; Yoder, J.L.; et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 2020, 584, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Rothwarf, A.; Taylor, B.N. Measurement of Recombination Lifetimes in Superconductors. Phys. Rev. Lett. 1967, 19, 27. [Google Scholar] [CrossRef]
- Kabanov, V.V.; Demsar, J.; Mihailovic, D. Kinetics of a Superconductor Excited with a Femtosecond Optical Pulse. Phys. Rev. Lett. 2005, 95, 147002. [Google Scholar] [CrossRef]
- Stojchevska, L.; Kusar, P.; Mertelj, T.; Kabanov, V.V.; Toda, Y.; Yao, X.; Mihailovic, D. Mechanisms of nonthermal destruction of the superconducting state and melting of the charge-density-wave state by femtosecond laser pulses. Phys. Rev. B 2011, 84, 180507(R). [Google Scholar] [CrossRef]
- Federici, J.F.; Greene, B.I.; Saeta, P.N.; Dykaar, D.R.; Sharifi, F.; Dynes, R.C. Direct picosecond measurement of photoinduced Cooper-pair breaking in lead. Phys. Rev. B 1992, 46, 11153. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, X.; Vaswani, C.; Sundahl, C.; Song, B.; Yao, Y.; Cheng, D.; Liu, Z.; Orth, P.P.; Mootz, M.; et al. Ultrafast nonthermal terahertz electrodynamics and possible quantum energy transfer in the Nb3Sn superconductor. Phys. Rev. B 2019, 99, 094504. [Google Scholar] [CrossRef]
- Cheng, B.; Cheng, D.; Lee, K.; Luo, L.; Chen, Z.; Lee, Y.; Wang, B.Y.; Mootz, M.; Perakis, I.E.; Shen, Z.X.; et al. Evidence for d–wave superconductivity of infinite-layer nickelates from low-energy electrodynamics. Nat. Mater. 2024, 23, 775. [Google Scholar] [CrossRef] [PubMed]
- Rothwarf, A.; Sai-Halasz, G.A.; Langenberg, D.N. Quasiparticle Lifetimes and Microwave Response in Nonequilibrium Superconductors. Phys. Rev. Lett. 1974, 23, 212. [Google Scholar] [CrossRef]
- Chang, J.-J.; Scalapino, D.J. Kinetic-equation approach to nonequilibrium superconductivity. Phys. Rev. B 1977, 15, 2651. [Google Scholar] [CrossRef]
- Gedik, N.; Blake, P.; Spitzer, R.C.; Orenstein, J.; Liang, R.; Bonn, D.A.; Hardy, W.N. Single-quasiparticle stability and quasiparticle-pair decay in YBa2Cu3O6.5. Phys. Rev. B 2004, 70, 014504. [Google Scholar] [CrossRef]
- Hinton, J.P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J.D.; Chan, M.K.; Veit, M.J.; Dorow, C.J.; Barišić, N.; Kemper, A.F.; et al. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors. Sci. Rep. 2016, 6, 25962. [Google Scholar] [CrossRef]
- Chia, E.E.M.; Talbayev, D.; Zhu, J.; Yuan, H.Q.; Park, T.; Thompson, J.D.; Panagopoulos, C.; Chen, G.F.; Luo, J.L.; Wang, N.L.; et al. Ultrafast Pump-Probe Study of Phase Separation and Competing Orders in the Underdoped (Ba,K)Fe2As2 Superconductor. Phys. Rev. Lett. 2010, 104, 027003. [Google Scholar] [CrossRef]
- Lin, K.H.; Wang, K.J.; Chang, C.C.; Wen, Y.C.; Lv, B.; Chu, C.W.; Wu, M.K. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2. Sci. Rep. 2016, 6, 25962. [Google Scholar] [CrossRef]
- Yang, X.; Luo, L.; Mootz, M.; Patz, A.; Bud’ko, S.L.; Canfield, P.C.; Perakis, I.E.; Wang, J. Nonequilibrium Pair Breaking in Ba(Fe1−xCox)2As2 Superconductors: Evidence for Formation of a Excitonic State. Phys. Rev. Lett. 2018, 121, 267001. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.S.; Kopas, C.J.; Marshall, J.; Fang, X.; Joshi, K.R.; Datta, A.; Ghimire, S.; Park, J.M.; Kim, R.; Setiawan, D.; et al. Correlating Deposition Method, Microstructure, and Performance of Nb/Si-based Superconducting Coplanar Waveguide Resonators. Acta Mater. 2024, 276, 120153. [Google Scholar] [CrossRef]
- Checchin, M.; Martinello, M.; Grassellino, A.; Aderhold, S.; Chandrasekaran, S.K.; Melnychuk, O.S.; Posen, S.; Romanenko, A.; Sergatskov, D.A. Frequency dependence of trapped flux sensitivity in SRF cavities. Appl. Phys. Lett. 2018, 112, 072601. [Google Scholar] [CrossRef]
- Cheng, D.; Song, B.; Kang, J.-H.; Sundahl, C.; Edgeton, A.L.; Luo, L.; Park, J.-M.; Collantes, Y.G.; Hellstrom, E.E.; Mootz, M.; et al. Study of Elastic and Structural Properties of BaFe2As2 Ultrathin Film Using Picosecond Ultrasonics. Materials 2023, 16, 7031. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
Sample | Fabrication Method | Thickness | Average Grain Size | Substrate |
---|---|---|---|---|
HiPIMS | HiPIMS sputter | 175 nm | 44 nm | Si (001) |
DC high | DC sputter (high power) | 175 nm | 69 nm | Si (001) |
DC LH | DC sputter (low to high power) | 175 nm (30 nm low, then 145 nm high) | 65 nm | Si (001) |
SRF | cavity cutout | 2 mm | 50 m | bulk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-M.; Chong, Z.X.; Kim, R.H.J.; Haeuser, S.; Chan, R.; Murthy, A.A.; Kopas, C.J.; Marshall, J.; Setiawan, D.; Lachman, E.; et al. Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields. Materials 2025, 18, 569. https://doi.org/10.3390/ma18030569
Park J-M, Chong ZX, Kim RHJ, Haeuser S, Chan R, Murthy AA, Kopas CJ, Marshall J, Setiawan D, Lachman E, et al. Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields. Materials. 2025; 18(3):569. https://doi.org/10.3390/ma18030569
Chicago/Turabian StylePark, Joong-Mok, Zhi Xiang Chong, Richard H. J. Kim, Samuel Haeuser, Randy Chan, Akshay A. Murthy, Cameron J. Kopas, Jayss Marshall, Daniel Setiawan, Ella Lachman, and et al. 2025. "Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields" Materials 18, no. 3: 569. https://doi.org/10.3390/ma18030569
APA StylePark, J.-M., Chong, Z. X., Kim, R. H. J., Haeuser, S., Chan, R., Murthy, A. A., Kopas, C. J., Marshall, J., Setiawan, D., Lachman, E., Mutus, J. Y., Yadavalli, K., Grassellino, A., Romanenko, A., & Wang, J. (2025). Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields. Materials, 18(3), 569. https://doi.org/10.3390/ma18030569