An Investigation of the Usability of Alkali-Activated Blast Furnace Slag-Additive Construction Demolition Waste as Filling Material
<p>CDW aggregates: (<b>a</b>) image; (<b>b</b>) particle-size distribution curve.</p> "> Figure 2
<p>XRD patterns of CDW.</p> "> Figure 3
<p>(<b>a</b>) Compaction curve; (<b>b</b>) stress–strain behavior in the CBR test; (<b>c</b>) gradation change before and after the modified Proctor test.</p> "> Figure 4
<p>Curves of fine-grained soil: (<b>a</b>) gradation; (<b>b</b>) compaction.</p> "> Figure 5
<p>The strength of fine-grained soil based on water content variation: (<b>a</b>) c<sub>u</sub> (<b>b</b>) CBR.</p> "> Figure 6
<p>Model plate-loading test system: (<b>a</b>) image; (<b>b</b>) drawing.</p> "> Figure 7
<p>Model plate-loading tests: (<b>a</b>) Series I; (<b>b</b>) Series II; (<b>c</b>) Series III and IV.</p> "> Figure 8
<p>The compaction curves of BFS-added CDW: (<b>a</b>) with water; (<b>b</b>) with AAS.</p> "> Figure 9
<p>CBR tests’ results of CDW samples with BFS: (<b>a</b>) cured for 7 days; (<b>b</b>) cured for 28 days.</p> "> Figure 10
<p>CBR tests’ results of CDW samples with BFS and AAS: (<b>a</b>) cured for 7 days; (<b>b</b>) cured for 28 days.</p> "> Figure 11
<p>Effect of BFS additive ratio on BCR<sub>CBR.</sub></p> "> Figure 12
<p>Series I: (<b>a</b>) water content and strength values along the soil depth; (<b>b</b>) q–s/D curve.</p> "> Figure 13
<p>Series II: (<b>a</b>) water content and strength values along the soil depth for test number 4; (<b>b</b>) q–s/D curves.</p> "> Figure 14
<p>Series III: (<b>a</b>) water content and strength values along the soil depth for test number 7; (<b>b</b>) q–s/D curves.</p> "> Figure 15
<p>Series IV: (<b>a</b>) water content and strength values along the soil depth for test number 10; (<b>b</b>) q–s/D curves.</p> "> Figure 16
<p>The BCR<sub>MPL</sub> values obtained from the results of the model plate-loading tests.</p> "> Figure 17
<p>The SEM images of the BFS sample.</p> "> Figure 18
<p>The SEM images of the CDW sample.</p> "> Figure 19
<p>The SEM images of the CDW+AAS sample.</p> "> Figure 20
<p>The SEM images of the CDW+20%BFS sample.</p> "> Figure 21
<p>The SEM images of the CDW+20%BFS+AAS sample.</p> "> Figure 22
<p>A comparison of the results of tests with those of literature [<a href="#B56-materials-18-00398" class="html-bibr">56</a>,<a href="#B57-materials-18-00398" class="html-bibr">57</a>,<a href="#B58-materials-18-00398" class="html-bibr">58</a>,<a href="#B59-materials-18-00398" class="html-bibr">59</a>,<a href="#B60-materials-18-00398" class="html-bibr">60</a>] for CBR tests.</p> "> Figure 23
<p>A comparison of the results of plate-loading tests with those of the literature [<a href="#B58-materials-18-00398" class="html-bibr">58</a>]: (<b>a</b>) Series III; (<b>b</b>) Series IV.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Construction and Demolition Waste
2.2. Cohesive (Fine-Grained) Soil
2.3. Blast Furnace Slag
2.4. Alkaline Activator Solution
2.5. Geotextile
3. Methods
3.1. Modified Proctor and CBR Tests
3.2. Model Plate-Loading Test
- The frame is constructed of rigid steel profiles.
- The loading engine (servo motor) is located on top of the frame.
- A load cell records the load data during the test.
- The loading piston transfers the servo motor’s movement to the model foundation.
- Linear variable differential transformer (LVDT) sensors measure displacement values.
- The model foundation is where the plate is positioned for testing.
- A pressure meter is used to measure the pressure on the tank’s inner surface.
- The test tank.
3.3. Scanning Electron Microscope and Energy Dispersive X-Ray Spectroscopy
4. Results
4.1. Compression of the Samples
4.2. Evaluation of CBR Tests’ Results
4.3. The Assessment of Model Plate-Loading Tests
4.4. The Assessment of SEM-EDS Analyses of the Samples
4.5. A Comparison of the Results of the Tests with Those of Previous Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, C.; Chen, J.; Gu, C.; Wang, J.; Cai, Y.; Zhang, T. Resilient and Permanent Deformation Behaviors of Construction and Demolition Wastes in Unbound Pavement Base and Subbase Applications. Transp. Geotech. 2021, 28, 100541. [Google Scholar] [CrossRef]
- García-Díaz, A.; Delgado-Plana, P.; Bueno-Rodríguez, S.; Eliche-Quesada, D. Investigation of Waste Clay Brick (Chamotte) Addition and Activator Modulus in the Properties of Alkaline Activation Cements Based on Construction and Demolition Waste. J. Build. Eng. 2024, 84, 108568. [Google Scholar] [CrossRef]
- OECD. Global Material Resources Outlook to 2060; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Mahpour, A. Prioritizing Barriers to Adopt Circular Economy in Construction and Demolition Waste Management. Resour. Conserv. Recycl. 2018, 134, 216–227. [Google Scholar] [CrossRef]
- Purchase, C.K.; Zulayq, D.M.A.; O’Brien, B.T.; Kowalewski, M.J.; Berenjian, A.; Tarighaleslami, A.H.; Seifan, M. Circular Economy of Construction and Demolition Waste: A Literature Review on Lessons, Challenges, and Benefits. Materials 2021, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Global Status Report for Buildings and Construction 2021; United Nations Environmental Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Darko, A.; Chan, A.P.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial Intelligence in the AEC Industry: Scientometric Analysis and Visualization of Research Activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Nasir, M.H.A.; Genovese, A.; Acquaye, A.A.; Koh, S.; Yamoah, F. Comparing Linear and Circular Supply Chains: A Case Study from the Construction Industry. Int. J. Prod. Econ. 2017, 183, 443–457. [Google Scholar] [CrossRef]
- Ok, B.; Sarici, T.; Talaslioglu, T.; Yildiz, A. Geotechnical Properties of Recycled Construction and Demolition Materials for Filling Applications. Transp. Geotech. 2020, 24, 100380. [Google Scholar] [CrossRef]
- Damgaard, A.; Lodato, C.; Butera, S.; Fruergaard Astrup, T.; Kamps, M.; Corbin, L.; Tonini, D.; Astrup, T.F. Background Data Collection and Life Cycle Assessment for Construction and Demolition (CDW) Waste Management; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Bordoloi, S.; Afolayan, O.D.; Ng, C.W.W. Feasibility of Construction Demolition Waste for Unexplored Geotechnical and Geo-Environmental Applications—A Review. Constr. Build. Mater. 2022, 356, 129230. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.G.; Jiang, S.Q.; Lyu, X.J.; Gao, X.; Zhu, X.N.; Zhang, Y.Q. Review on Zero Waste Strategy for Urban Construction and Demolition Waste: Full Component Resource Utilization Approach for Sustainable and Low-Carbon. Constr. Build. Mater. 2023, 395, 132354. [Google Scholar] [CrossRef]
- Sarici, T. Evaluation of Usability of Pozzolan Reinforced Construction and Demolition Wastes as a Granular Fill. Ph.D. Dissertation, Inonu University Graduate School of Natural and Applied Sciences, Malatya, Turkey, 2019. [Google Scholar]
- Sarici, T.; Ok, B.; Akbulut, N.; Cenk, A.H. An Experimental Study on the Usability of Reclaimed Asphalt Pavements or Waste Bricks in the Stone Columns. In Sustainable Civil Engineering at the Beginning of Third Millennium; Türker, U., Eren, Ö., Uygar, E., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2024; Volume 481, pp. 161–175. [Google Scholar] [CrossRef]
- Huang, D.; Lin, C.; Liu, Z.; Lu, Y.; Li, S. Compressive Behaviors of Steel Fiber-Reinforced Geopolymer Recycled Aggregate Concrete-Filled GFRP Tube Columns. Structures 2024, 66, 106829. [Google Scholar] [CrossRef]
- Přikryl, R. Geomaterials as Construction Aggregates: A State-of-the-Art. Bull. Eng. Geol. Environ. 2021, 80, 8831–8845. [Google Scholar] [CrossRef]
- Chen, W.Z.; Jiao, C.J.; Zhang, X.C.; Yang, Y.; Chen, X.F. Study on the Microstructure of Recycled Aggregate Concrete Strengthened by the Nano-SiO2 Soaking Method. Structures 2023, 58, 105388. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, J.; Zhang, M.; Dong, H. Uniaxial Compression Behavior of Steel Fiber Reinforced Recycled Coarse Aggregate Concrete Confined by Stirrups. Structures 2024, 60, 105958. [Google Scholar] [CrossRef]
- Gopalakrishna, B.; Dinakar, P. An Innovative Approach to Fly Ash-Based Geopolymer Concrete Mix Design: Utilizing 100% Recycled Aggregates. Structures 2024, 66, 106819. [Google Scholar] [CrossRef]
- Bassani, M.; Tefa, L.; Russo, A.; Palmero, P. Alkali-Activation of Recycled Construction and Demolition Waste Aggregate with No Added Binder. Constr. Build. Mater. 2019, 205, 398–413. [Google Scholar] [CrossRef]
- Arulrajah, A.; Mohammadinia, A.; Phummiphan, I.; Horpibulsuk, S.; Samingthong, W. Stabilization of Recycled Demolition Aggregates by Geopolymers Comprising Calcium Carbide Residue, Fly Ash and Slag Precursors. Constr. Build. Mater. 2016, 114, 864–873. [Google Scholar] [CrossRef]
- Arulrajah, A.; Mohammadinia, A.; Horpibulsuk, S.; Samingthong, W. Influence of Class F Fly Ash and Curing Temperature on Strength Development of Fly Ash-Recycled Concrete Aggregate Blends. Constr. Build. Mater. 2016, 127, 743–750. [Google Scholar] [CrossRef]
- Arulrajah, A.; Rahman, M.A.; Piratheepan, J.; Bo, M.W.; Imteaz, M.A. Evaluation of Interface Shear Strength Properties of Geogrid-Reinforced Construction and Demolition Materials Using a Modified Large-Scale Direct Shear Testing Apparatus. J. Mater. Civ. Eng. 2013, 26, 974–982. [Google Scholar] [CrossRef]
- Rahman, M.A.; Arulrajah, A.; Piratheepan, J.; Bo, M.W.; Imteaz, M.A. Resilient Modulus and Permanent Deformation Responses of Geogrid-Reinforced Construction and Demolition Materials. J. Mater. Civ. Eng. 2013, 26, 512–519. [Google Scholar] [CrossRef]
- Sarici, T.; Ok, B.; Mert, A.; Comez, S. The Resilient Modulus of Hybrid Construction and Demolition Wastes Reinforced by a Geogrid. Acta Geotech. Slov. 2022, 19, 2–14. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Ghorbani, B.; Saberian, M.; van Staden, R.; Guerrieri, M.; Fragomeni, S. Strength and Resilient Modulus Characteristics of Emulsion-Stabilized Demolition Wastes in Pavement Structures. J. Build. Eng. 2024, 82, 108257. [Google Scholar] [CrossRef]
- Del Río Merino, M.; Izquierdo Gracia, P.; Weis Azevedo, I.S. Sustainable Construction: Construction and Demolition Waste Reconsidered. Waste Manag. Res. 2010, 28, 118–129. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Arulrajah, A.; Phummiphan, I.; Horpibulsuk, S.; Mirzababaei, M. Flexural Fatigue Strength of Demolition Aggregates Stabilized with Alkali-Activated Calcium Carbide Residue. Constr. Build. Mater. 2019, 199, 115–123. [Google Scholar] [CrossRef]
- Hasan, U.; Chegenizadeh, A.; Budihardjo, M.A.; Nikraz, H. Experimental Evaluation of Construction Waste and Ground Granulated Blast Furnace Slag as Alternative Soil Stabilisers. Geotech. Geol. Eng. 2016, 34, 1707–1722. [Google Scholar] [CrossRef]
- Turkish Statistical Institute (TUIK). Waste Statistics. 2022. Available online: https://www.tuik.gov.tr/ (accessed on 25 December 2024).
- Kaplan, E.; Soyluk, A. Post-earthquake waste management: Recycling of waste concrete and suggestions for use in architecture. J. Archit. Sci. Appl. 2024, 9, 140–162. [Google Scholar] [CrossRef]
- İpekçi, C.A.; Coşgun, N.; Karadayı, T.T. The importance of recovered materials usage in terms of sustainability in the construction sector. J. Tubav Sci. 2017, 10, 43–50. [Google Scholar]
- Sarici, T.; Ozcan, R.T. Evaluation of geotechnical properties of Doğanşehir district with geographical information systems after the February 6, 2023 earthquakes. J. Seismol. 2024. [Google Scholar] [CrossRef]
- Şenol, C. Effects of occurring big earthquakes in Turkey on settlement and demographic structure (1927–2020). Int. J. Soc. Sci. Acad. 2020, 4, 620–644. [Google Scholar] [CrossRef]
- Doğdu, G.; Alkan, S.N. Management of post-earthquake construction and demolition waste: 6 February 2023 Kahramanmaraş Earthquake disasters. Artvin Coruh Univ. J. Eng. Sci. 2023, 1, 38–50. [Google Scholar]
- Ok, B.; Demir, A. Investigation of The Usability of Construction and Demolition Wastes in Road Bases. OHU J. Eng. Sci. 2018, 7, 224–236. [Google Scholar] [CrossRef]
- ASTM C136-06; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2006. [CrossRef]
- ASTM D2487-11; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- BS EN 933-3; Tests for Geometrical Properties of Aggregates—Part 3: Determination of Particle Shape–Flakiness Index. British Standards Institution: London, UK, 2012. [CrossRef]
- ASTM C127-12; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM C128-12; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM C131-06; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International: West Conshohocken, PA, USA, 2006. [CrossRef]
- ASTM D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM D1883-14; Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM D854-10; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- ASTM D4318-17; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM D2166-06; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2006. [CrossRef]
- Briaud, J.L.; Jeanjean, P. Load Settlement Curve Method for Spread Footings on Sand. In Vertical and Horizontal Deformations of Foundations and Embankments; ASCE: Reston, VA, USA, 1994; Volume 2, pp. 1774–1804. [Google Scholar]
- Örnek, M. Geogrid Reinforcement of Soft Clay Deposits. Ph.D. Dissertation, Cukurova University Graduate School of Natural and Applied Sciences, Adana, Turkey, 2009. [Google Scholar]
- Binquet, J.; Lee, K.L. Bearing Capacity Analysis of Reinforced Earth Slabs. J. Geotech. Eng. Div. 1975, 101, 1257–1276. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of Sodium Hydroxide and Sodium Silicate Solutions on Compressive and Shear Bond Strengths of FA–GBFS Geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Memon, A.H.; Radin, S.S.; Zain, M.F.M.; Trottier, J.F. Effects of Mineral and Chemical Admixtures on High-Strength Concrete in Seawater. Cem. Concr. Res. 2002, 32, 373–377. [Google Scholar] [CrossRef]
- Hardjito, D. Studies of Fly Ash-Based Geopolymer Concrete. Ph.D. Dissertation, Curtin University of Technology, Perth, Australia, 2005. [Google Scholar]
- Ekinci, E.; Türkmen, İ.; Kantarci, F.; Karakoç, M.B. The Improvement of Mechanical, Physical and Durability Characteristics of Volcanic Tuff Based Geopolymer Concrete by Using Nano Silica, Micro Silica and Styrene-Butadiene Latex Additives at Different Ratios. Constr. Build. Mater. 2019, 201, 257–267. [Google Scholar] [CrossRef]
- Highways Technical Specifications (HTS). Road Infrastructure, Engineering Structures, Bridges and Tunnels, Pavements and Miscellaneous Works; General Directorate of Highways: Ankara, Turkey, 2013. [Google Scholar]
- Poon, C.S.; Qiao, X.C.; Chan, D. The Cause and Influence of Self-Cementing Properties of Fine Recycled Concrete Aggregates on the Properties of Unbound Sub-Base. Waste Manag. 2006, 26, 1166–1172. [Google Scholar] [CrossRef]
- Ok, B. Investigation of the Behaviour Under Static and Cyclic Loading of Construction and Demolition Waste Embankment Reinforced with Geosynthetics. Ph.D. Dissertation, Cukurova University Graduate School of Natural and Applied Sciences, Adana, Turkey, 2018. [Google Scholar]
- Jiménez, J.R.; Agrela, F.; Ayuso, J.; Lopez, M. A Comparative Study of Recycled Aggregates from Concrete and Mixed Debris as Material for Unbound Road Sub-Base. Mater. Construcción 2011, 61, 289–302. [Google Scholar] [CrossRef]
- Bennert, T.A.; Maher, A. The Use of Recycled Concrete Aggregate in a Dense Graded Aggregate Base Course; U.S. Department of Transportation, Federal Highway Administration, New Jersey Department of Transportation: New Jersey, NJ, USA, 2008. [Google Scholar]
- Sosahab, J.S.; Ardakani, A.; Hassanlourad, M. Resilient response and strength of highly expansive clay subgrade stabilized with recycled concrete aggregate and granulated blast furnace slag. Constr. Build. Mater. 2023, 408, 133816. [Google Scholar] [CrossRef]
- Figiela, B.; Brudny, K.; Lin, W.-T.; Korniejenko, K. Investigation of mechanical properties and microstructure of construction- and demolition-waste-based geopolymers. J. Compos. Sci. 2022, 6, 191. [Google Scholar] [CrossRef]
- Hamed, E.; Demiröz, A. Optimization of geotechnical characteristics of clayey soils using fly ash and granulated blast furnace slag-based geopolymer. Constr. Build. Mater. 2024, 441, 137488. [Google Scholar] [CrossRef]
- Bagriacik, B. Utilization of alkali-activated construction demolition waste for sandy soil improvement with large-scale laboratory experiments. Constr. Build. Mater. 2021, 302, 124173. [Google Scholar] [CrossRef]
- Sheikh, I.R.; Shah, M.Y. Performance evaluation of construction and demolition waste aggregates as an alternative base course material in highway construction. J. Struct. Integr. Maint. 2020, 6, 58–66. [Google Scholar] [CrossRef]
- Ok, B.; Sarici, T.; Demir, A.; Talaslioglu, T.; Yildiz, A. Investigation of construction and demolition materials reinforced by geosynthetics. Proc. Inst. Civ. Eng.—Eng. Sustain. 2023, 176, 285–298. [Google Scholar] [CrossRef]
Type of Material | Unit | Value |
---|---|---|
Aggregate without binder, aggregate with binder, etc. | (%) | 52.11 |
Concrete products, mortar, etc. | (%) | 36.21 |
Wall units with calcium silicate, brick, etc. | (%) | 11.14 |
Other materials such as non-floating wood plastic, metals, rubber, plaster, etc. | (%) | 0.44 |
Glass and glass-like materials | (%) | 0.09 |
Floating particles | (cm3/kg) | 0.06 |
Properties | Units | Value | Standard |
---|---|---|---|
Coefficient of uniformity (Cu) | - | 20.00 | [37] |
Coefficient of curvature (Cc) | - | 1.12 | [37] |
Soil classification | - | SW | [38] |
Flakiness index | % | 11.14 | [39] |
Specific gravity for fine particles (Gs) | - | 2.621 | [40] |
Water absorption for fine particles | % | 6.91 | [40] |
Specific gravity for coarse particles (Gs) | - | 2.603 | [41] |
Water absorption for coarse particles | % | 3.94 | [41] |
Los Angeles abrasion loss | % | 32.38 | [42] |
Maximum dry unit weight (γdmaks) | kN/m3 | 19.79 | [43] |
Optimum water content (ωopt) | % | 11.25 | [43] |
California bearing ratio (CBR) | % | 81.28 | [44] |
Properties | Units | Values | Standard |
---|---|---|---|
Soil classification | - | MH | [38] |
CBR (at ωopt) | % | 20.61 | [44] |
CBR (at ω = 46%) | % | 2.19 | [44] |
Specific gravity (Gs) | - | 2.61 | [45] |
Liquid limit (ωL) | % | 58.08 | [46] |
Plastic limit (ωP) | % | 36.32 | [46] |
Plasticity index (ωPI) | % | 21.76 | [46] |
Maximum dry unit weight (γdmaks) | kN/m3 | 14.80 | [47] |
Optimum water content (ωopt) | % | 28.25 | [47] |
Undrained shear strength (cu) (at ωopt) | kN/m2 | 204.36 | [48] |
Undrained shear strength (cu) (at ω = 46%) | kN/m2 | 26.05 | [48] |
Compounds | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | S−2 | Na2O | K2O | TiO2 | Mn2O3 | Cl− |
Unit | % | |||||||||||
Value | 32.47 | 9.94 | 1.25 | 32.45 | 9.31 | 0.82 | 0.33 | 0.31 | 0.85 | 1.16 | 3.51 | 0.015 |
Properties | Molecular Formula | Molecular Mass | Color | pH | Relative Density |
---|---|---|---|---|---|
Unit | - | g/mol | - | - | kN/m3 |
Value | NaOH | 40.0 | White | 13–14 | 21.20 |
Properties | Units | Values |
---|---|---|
Type | - | Non-woven |
Raw material | - | Polypropylene |
Unit weight | g/cm2 | 250 |
Opening size | mm | 0.12 |
Thickness | mm | 1.50 |
Elongation | % | 50 |
Static puncture resistance | N | 2500 |
Tensile strength | kN/m | 13/15 |
Permeability | m/s | 0.06 |
Dynamic perforation | mm | 20 |
UV resistance | % | 70 |
Test Series | Test Number | Presence of the CDW | Presence of the BFS | Presence of the AAS | Presence of the Geotextile | Foundation Diameter (D) (mm) | Height of the Test Section (mm) |
---|---|---|---|---|---|---|---|
Series I | 1 | ✘ | ✘ | ✘ | ✘ | 150 | 350 |
Series II | 2 | ✘ | ✘ | ✘ | Series I + 50 | ||
3 | Series I + 100 | ||||||
4 | Series I + 150 | ||||||
Series III | 5 | ✘ | ✘ | Series I + 50 | |||
6 | Series I + 100 | ||||||
7 | Series I + 150 | ||||||
Series IV | 8 | Series I + 50 | |||||
9 | Series I + 100 | ||||||
10 | Series I + 150 |
Element | BFS Mass (%) | CDW Mass (%) | CDW+AAS Mass (%) | CDW+20%BFS Mass (%) | CDW+20%BFS+AAS Mass (%) |
---|---|---|---|---|---|
Ca | 6.91 | 8.18 | 4.87 | 4.77 | 10.05 |
Si | 7.45 | 3.10 | 3.84 | 3.19 | 6.06 |
C | 3.45 | 6.14 | 5.86 | 9.54 | 7.01 |
Al | 2.52 | 0.49 | 1.32 | 0.79 | 1.77 |
Mg | 2.26 | 0.81 | 1.22 | 0.75 | 1.58 |
Mn | 0.35 | x | x | 0.32 | 0.47 |
S | 0.58 | x | x | x | 0.56 |
Ti | 0.25 | x | 0.11 | 0.18 | 0.21 |
Fe | 0.16 | 1.11 | 1.06 | 0.33 | x |
K | 0.12 | x | 0.28 | 0.10 | 0.06 |
Na | 0.16 | x | 1.91 | 0.08 | 2.58 |
O | 75.80 | 80.19 | 79.54 | 79.94 | 69.65 |
Sample Name | CBR (%) | Sample Name | CBR (%) |
---|---|---|---|
NA for subbase [56] | 30.00 | NA [60] | 182.00 |
NA [57] | 83.00 | This study (15%BFS-7d) | 189.90 |
This study (CDW-7d) | 90.59 | This study (25%BFS-7d) | 199.46 |
NA for granular filling [56] | 100.00 | This study (20%BFS-7d) | 242.99 |
This study (5%BFS-7d) | 109.28 | This study (5%BFS-AAS-7d) | 319.98 |
NA [58] | 125.16 | This study (10%BFS-AAS-7d) | 453.62 |
This study (10%BFS-7d) | 139.55 | This study (15%BFS-AAS-7d) | 708.25 |
This study (CDW-AAS-7d) | 151.22 | This study (30%BFS-AAS-7d) | 738.92 |
NA [59] | 152.00 | This study (25%BFS-AAS-7d) | 868.89 |
This study (30%BFS-7d) | 166.00 | This study (20%BFS-AAS-7d) | 1066.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarici, T.; Geckil, T.; Ok, B.; Aksoy, H.S. An Investigation of the Usability of Alkali-Activated Blast Furnace Slag-Additive Construction Demolition Waste as Filling Material. Materials 2025, 18, 398. https://doi.org/10.3390/ma18020398
Sarici T, Geckil T, Ok B, Aksoy HS. An Investigation of the Usability of Alkali-Activated Blast Furnace Slag-Additive Construction Demolition Waste as Filling Material. Materials. 2025; 18(2):398. https://doi.org/10.3390/ma18020398
Chicago/Turabian StyleSarici, Talha, Tacettin Geckil, Bahadir Ok, and Huseyin Suha Aksoy. 2025. "An Investigation of the Usability of Alkali-Activated Blast Furnace Slag-Additive Construction Demolition Waste as Filling Material" Materials 18, no. 2: 398. https://doi.org/10.3390/ma18020398
APA StyleSarici, T., Geckil, T., Ok, B., & Aksoy, H. S. (2025). An Investigation of the Usability of Alkali-Activated Blast Furnace Slag-Additive Construction Demolition Waste as Filling Material. Materials, 18(2), 398. https://doi.org/10.3390/ma18020398