An Approach of Manufacturing High-Molecular-Weight CNT-Filled Epoxy Composite
<p>Capillary rheology testing on molding compound at 200 °C.</p> "> Figure 2
<p>Parallel plate rheology testing on molding compound at 200 °C.</p> "> Figure 3
<p>Tg test via parallel rheometer on CNT−filled epoxy without hardener.</p> "> Figure 4
<p>TGA test on CNT−filled epoxy without hardener.</p> "> Figure 5
<p>Dependence of Storage Modulus G′ and Loss Modulus G″ on Time at 200 °C (<b>A</b>), 250 °C (<b>B</b>), and 300 °C (<b>C</b>).</p> "> Figure 6
<p>Dependence of loss tangent on Time at 200 °C (<b>A</b>), 250 °C (<b>B</b>), and 300 °C (<b>C</b>) measured at angular frequency of 1 Hz.</p> "> Figure 7
<p>Cure process at 120 °C for one week.</p> "> Figure 8
<p>TGA testing on samples cured at 120 °C.</p> "> Figure 9
<p>Dynamic scanning cure of CNT-filled epoxy at 5 °C/min (<b>A</b>), 10 °C/min (<b>B</b>), and 20 °C/min (<b>C</b>).</p> "> Figure 10
<p>Ramped/stepped cure procedure.</p> "> Figure 11
<p>TGA testing on samples after stepped cure.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Molding Compound Preparation
2.3. Molding Method
2.4. Curing
2.5. Characterization
2.5.1. Mechanical Property Testing
2.5.2. Thermal Property Testing
2.5.3. Rheological Property Testing
2.5.4. Electrical Resistivity Testing
3. Results and Discussion
3.1. Molding
3.2. Isothermal Cure
3.3. Ramped/Stepped Cure
4. Conclusions
5. Challenges and Future Prospects of Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kern, K.T.; Ries, H.R.; Long, E.R. Dielectric Analysis for Polymer Processing. J. Mater. Ed. 1994, 16, 293–303. [Google Scholar]
- Bratychak, M.; Brostow, W. Synthesis and properties of epoxy derivatives of epoxy resins based on Bisphenol A. 1. Effects of the presence of inorganic bases. Polym. Eng. Sci. 1999, 39, 1541–1549. [Google Scholar] [CrossRef]
- Bilyeu, B.; Brostow, W.; Menard, K.P. Effect of out-time aging in composite prepreg material. J. Mater. Educ. 1999, 21, 281–286. [Google Scholar]
- Kou, Y.; Zhou, W.; Li, B.; Dong, L.; Duan, Y.E.; Hou, Q.; Liu, X.; Cai, H.; Chen, Q.; Dang, Z. Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene. Compos. Part A Appl. Sci. Manuf. 2018, 114, 97–106. [Google Scholar] [CrossRef]
- Velthem, P.; Ballout, W.; Horion, J.; Janssens, Y.A.; Destoop, V.; Pardoen, T.; Bailly, C. Morphology and fracture properties of toughened highly crosslinked epoxy composites: A comparative study between high and low Tg tougheners. Compos. Part B Eng. 2016, 101, 14–20. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Arumugam, V.; Souhith, R.; Santulli, C. Influence of Milled Glass Fiber Fillers on Mode I & Mode II Interlaminar Fracture Toughness of Epoxy Resin for Fabrication of Glass/Epoxy Composites. Fibers 2020, 8, 36. [Google Scholar] [CrossRef]
- Feng, P.; Song, G.; Li, X.; Xu, H.; Xu, L.; Lv, D.; Zhu, X.; Huang, Y.; Ma, L. Effects of different “rigid-flexible” structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites. J. Colloid. Interface Sci. 2021, 583, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Nasser, J.; Lin, J.; Steinke, K.; Sodano, H.A. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos. Sci. Technol. 2019, 174, 125–133. [Google Scholar] [CrossRef]
- Agrawal, A.; Awasthi, T.; Soni, D.K.; Sharma, A.; Mishra, V. Physical and mechanical behaviour of epoxy/hexagonal boron nitride/short sisal fiber hybrid composites. Mater. Today Proc. 2020, 28, 2166–2170. [Google Scholar] [CrossRef]
- Picu, C.R.; Krawczyk, K.K.; Wang, Z.; Pishvazadeh-Moghaddam, H.; Sieberer, M.; Lassnig, A.; Kern, W.; Hadar, A.; Constantinescu, D.M. Toughening in nanosilica-reinforced epoxy with tunable filler-matrix interface properties. Compos. Sci. Technol. 2019, 183, 107799. [Google Scholar] [CrossRef]
- Chee, S.S.; Jawaid, M.; Sultan MT, H.; Alothman, O.Y.; Abdullah, L.C. Effects of nanoclay on physical and dimensional stability of Bamboo/Kenaf/nanoclay reinforced epoxy hybrid nanocomposites. J. Mater. Res. Technol. 2020, 9, 5871–5888. [Google Scholar] [CrossRef]
- Joshi, S.K.; Kumar, A.; Zaidi, M.G.H. Effect of Nanographite on Electrical, Mechanical and Wear Characteristics of Graphite Epoxy Composites. Def. Sci. J. 2020, 70, 306–312. [Google Scholar] [CrossRef]
- Nair, S.S.; Dartiailh, C.; Levin, D.B.; Yan, N. Highly Toughened and Transparent Biobased Epoxy Composites Reinforced with Cellulose Nanofibrils. Polymers 2019, 11, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; Gupta, V.K.; Singh, A.P. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer 2019, 180, 121724. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Kotomin, S.V. Effect of Nanoparticles and Their Anisometry on Adhesion and Strength in Hybrid Carbon-Fiber-Reinforced Epoxy Nanocomposites. J. Compos. Sci. 2023, 7, 147. [Google Scholar] [CrossRef]
- Pillai, S.K.; Ray, S.S. Epoxy-based Carbon Nanotubes Reinforced Composites. In Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications; Reddy, B., Ed.; National Centre for Nano-Structured Materials, CSIR: Pretoria, South Africa, 2011; ISBN 978-953-307-165-7. [Google Scholar]
- Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297–1300. [Google Scholar] [CrossRef]
- Despres, J.F.; Daguerre, E.; Lafdi, K. Flexibility of graphene layers in carbon nanotubes. Carbon 1995, 33, 87–96. [Google Scholar] [CrossRef]
- Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Phys. Chem. 1996, 104, 2089–2092. [Google Scholar] [CrossRef]
- Dai, H.; Wong, E.W.; Lieber, C.M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523–526. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–59. [Google Scholar] [CrossRef]
- Kumar, S.; Doshi, H.; Srinivasarao, M.; Park, J.O.; Schiraldi, D.A. Fibers from polypropylene/nano carbon fiber composites. Polymer 2002, 43, 1701–1703. [Google Scholar] [CrossRef]
- Yoshino, K.; Kajii, H.; Araki, H.; Sonoda, T.; Take, H.; Lee, S. Electrical and optical properties of conductingpolymer-fullerene and conductingpolymer-carbon nanotube composites. Fuller. Sci. Technol. 1999, 7, 695–711. [Google Scholar] [CrossRef]
- Qian, D.; Dickey, E.C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868–2870. [Google Scholar] [CrossRef]
- Jin, Z.; Pramoda, K.P.; Xu, G.; Goh, S.H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem. Phys. Lett. 2001, 337, 43–47. [Google Scholar] [CrossRef]
- Jin, Z.; Sun, X.; Xu, G.; Goh, S.H.; Ji, W. Nonlinear optical properties of some polymer/multiwalled carbon nanotube-based composites. Chem. Phys. Lett. 2000, 318, 505–510. [Google Scholar] [CrossRef]
- Cochet, M.; Maser, W.K.; Benito, A.M.; Callejas, M.A.; Martinez, M.T.; Benoit, J.M.; Schreiber, J.; Chauvet, O. Synthesis of a new polyaniline/nanotube composite: ‘‘in-situ’’ polymerization and charge transfer through site selective interaction. Chem. Comm. 2001, 16, 1450–1451. [Google Scholar] [CrossRef]
- Shaffer MS, P.; Windle, A.H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 1999, 11, 937–941. [Google Scholar] [CrossRef]
- Peigney, A.; Laurent, C.; Flahaut, E.; Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 2000, 26, 677–683. [Google Scholar] [CrossRef]
- Kuzumaki, T.; Miyazawa, K.; Ichinose, H.; Ito, K. Processing of carbon nanotube reinforced aluminium composite. J. Mater. Res. 1998, 13, 2445–2449. [Google Scholar] [CrossRef]
- Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967–5971. [Google Scholar] [CrossRef]
- Zhu, J.; Kim, J.; Peng, H.; Margrave, J.L.; Khabashesku, V.N.; Barrera, E.V. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Lett. 2003, 3, 1107–1113. [Google Scholar] [CrossRef]
- Wardle, B.L.; Saito, D.S.; Garcia, E.J.; Hart, A.J.; Guzman d Villoria, R.; Verploegen, E.A. Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube-polymer composites. Adv. Mater. 2008, 20, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liang, Z.; Wang, B.; Zhang, C.; Kramer, L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A 2004, 35, 1225–1232. [Google Scholar] [CrossRef]
- Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology. Science 2004, 306, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.F.; Wang, J.P.; Wen, J.J.; Liu, C.H.; Jiang, K.L.; Li, Q.Q.; Fan, S.S. Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 2010, 48, 260–266. [Google Scholar] [CrossRef]
- Potschke, P.; Fornes, T.D.; Paul, D.R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002, 43, 3247–3255. [Google Scholar] [CrossRef]
- Sun, L. Thermal Rheological Analysis of Cure Process of Epoxy Prepreg. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2002. [Google Scholar]
Z6 | Z5 | Z4 | Z3 | Z2 | Z1 | Z0 | Hopper |
---|---|---|---|---|---|---|---|
200 | 190 | 185 | 175 | 170 | 160 | 165 | 23 |
Shot Size | 1 st | V-P | |
---|---|---|---|
Screw position (mm) | 50 | 6 | 5 |
Injection speed (mm/s) | 0 | 150 | 100 |
Pressure (MPa) | Time (s) |
---|---|
65 | 3 |
Temperature (°C) | 200 | 250 | 300 |
---|---|---|---|
tgel (s) | 49,469 | 11,893 | 964 |
Ea (KJ/mol) | 87.74 |
Temperature (°C) | Time (Hour) | Sample Quality |
---|---|---|
200 | 89 | A few bubbles |
250 | 13 | Fair amount of bubbles |
300 | 10 | Lots of bubbles and warpage |
Modulus (MPa) | Stress at Break (MPa) | Strain at Break (%) | Strain Energy at Break (J/m2) | |
---|---|---|---|---|
Before cure | 3961 (100) | 34.6 (3.9) | 0.9 (0.1) | 0.035 (0.008) |
After cure | 3885 (30) | 81.8 (6.7) | 2.3 (0.2) | 0.21 (0.03) |
Enhancement (%) | −2 | 136 | 155 | 500 |
Modulus (MPa) | Stress at Break (MPa) | Strain at Break (%) | Strain Energy at Break (J/m2) | |
---|---|---|---|---|
Before cure | 3200 (58) | 15.5 (3) | 2.2 (0.3) | 0.6 (0.15) |
After cure | 3900 (40) | 42.6 (5) | 4.4 (0.3) | 2.7 (0.68) |
Enhancement (%) | 22 | 175 | 100 | 350 |
Direction | Resistivity (Ω.cm) |
---|---|
Parallel to Flow | 10.4 |
Transverse to Flow | 21.7 |
Modulus (MPa) | Stress at Break (MPa) | Strain at Break (%) | Strain Energy at Break (J) | |
---|---|---|---|---|
Before cure | 3961 (100) | 34.6 (3.9) | 0.9 (0.1) | 0.035 (0.008) |
After cure | 4188 (45) | 68.6 (4.2) | 1.8 (0.1) | 1.5 (0.02) |
Enhancement (%) | 6 | 98 | 100 | 418 |
Modulus (MPa) | Stress at Break (MPa) | Strain at Break (%) | Strain Energy at Break (J) | |
---|---|---|---|---|
Before cure | 3200 (58) | 15.5 (3) | 2.2 (0.3) | 0.6 (0.15) |
After cure | 4137 (50) | 35.8 (4) | 3.7 (0.2) | 1.9 (0.3) |
Enhancement (%) | 30 | 130 | 68 | 216 |
Direction | Resistivity (Ω.cm) |
---|---|
Parallel to Flow | 10.0 |
Transverse to Flow | 20.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acha, F.; Scheff, T.; Diaz Armas, N.; Mead, J.; Johnston, S.; Zhang, J. An Approach of Manufacturing High-Molecular-Weight CNT-Filled Epoxy Composite. Materials 2025, 18, 264. https://doi.org/10.3390/ma18020264
Acha F, Scheff T, Diaz Armas N, Mead J, Johnston S, Zhang J. An Approach of Manufacturing High-Molecular-Weight CNT-Filled Epoxy Composite. Materials. 2025; 18(2):264. https://doi.org/10.3390/ma18020264
Chicago/Turabian StyleAcha, Florence, Talya Scheff, Nathalia Diaz Armas, Joey Mead, Stephen Johnston, and Jinde Zhang. 2025. "An Approach of Manufacturing High-Molecular-Weight CNT-Filled Epoxy Composite" Materials 18, no. 2: 264. https://doi.org/10.3390/ma18020264
APA StyleAcha, F., Scheff, T., Diaz Armas, N., Mead, J., Johnston, S., & Zhang, J. (2025). An Approach of Manufacturing High-Molecular-Weight CNT-Filled Epoxy Composite. Materials, 18(2), 264. https://doi.org/10.3390/ma18020264