Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping
"> Figure 1
<p>(<b>a</b>) Optical images of BiSbTeSe<sub>2</sub>, Sn<span class="html-italic"><sub>x</sub></span>Bi<sub>1-<span class="html-italic">x</span></sub>SbTeSe<sub>2</sub> (<span class="html-italic">x</span> = 0.02), and In<sub>y</sub>Bi<sub>1-<span class="html-italic">y</span></sub>SbTeSe<sub>2</sub> (<span class="html-italic">y</span> = 0.04) single crystals. (<b>b</b>) XRD patterns for all as-grown samples, indicating (00<span class="html-italic">l</span>) planes. (<b>c</b>) Spectrum of EDS for <span class="html-italic">y</span> = 0.05 sample. (<b>d</b>) Elemental mapping of Sn<span class="html-italic"><sub>x</sub></span>Bi<sub>1-<span class="html-italic">x</span></sub>SbTeSe<sub>2</sub> (<span class="html-italic">x</span> = 0.05) and In<span class="html-italic"><sub>y</sub></span>Bi<sub>1-<span class="html-italic">y</span></sub>SbTeSe<sub>2</sub> (<span class="html-italic">y</span> = 0.05) single crystals.</p> "> Figure 2
<p>Electrical transport results of parent BiSbTeSe<sub>2</sub> bulk crystal. (<b>a</b>) Temperature dependence of resistivity of BiSbTeSe<sub>2</sub>. The inset shows the measurement scheme. (<b>b</b>) Arrhenius plots of <span class="html-italic">ρ<sub>xx</sub></span>(<span class="html-italic">T</span>). The cyan dashed line represents the linear fitting. (<b>c</b>) Magnetic field dependence of MR measured at 2 K. (<b>d</b>) Hall resistance measured at 2 K; the yellow dashed curve shows the result of two-band fitting.</p> "> Figure 3
<p>Electrical transport results of Sn<span class="html-italic"><sub>x</sub></span>Bi<sub>1-<span class="html-italic">x</span></sub>SbTeSe<sub>2</sub> crystals: (<b>a</b>) temperature dependence of resistivity of Sn<span class="html-italic"><sub>x</sub></span>Bi<sub>1-<span class="html-italic">x</span></sub>SbTeSe<sub>2</sub>; (<b>b</b>) Arrhenius plots of <span class="html-italic">ρ<sub>xx</sub></span>(<span class="html-italic">T</span>), the cyan dashed line represents the linear fitting; (<b>c</b>) MR at 2 K; and (<b>d</b>) Hall resistance at 2 K, where the yellow curves show the respective two-band fitting.</p> "> Figure 4
<p>Electrical transport results of parent In<sub><span class="html-italic">y</span></sub>Bi<sub>1-<span class="html-italic">y</span></sub>SbTeSe<sub>2</sub> crystals: (<b>a</b>) temperature dependence of resistivity curves <span class="html-italic">ρ</span><sub>xx</sub>(<span class="html-italic">T</span>); (<b>b</b>) Arrhenius plots of <span class="html-italic">ρ<sub>xx</sub></span>(<span class="html-italic">T</span>), the cyan dashed line represents the linear fitting; (<b>c</b>) MR at 2 K; and (<b>d</b>) Hall resistance at 2 K, where the yellow curves show the respective two-band fitting.</p> ">
Abstract
:1. Introduction
2. Method
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef]
- Zhang, H.J.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y.S.; Cava, R.J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402. [Google Scholar] [CrossRef]
- Chen, Y.L.; Analytis, J.G.; Chu, J.-H.; Liu, Z.K.; Mo, S.-K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef]
- Analytis, J.G.; Chu, J.-H.; Chen, Y.; Corredor, F.; McDonald, R.D.; Shen, Z.X.; Fisher, I.R. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov–de Haas measurements. Phys. Rev. B 2010, 81, 205407. [Google Scholar] [CrossRef]
- Checkelsky, J.G.; Hor, Y.S.; Cava, R.J.; Ong, N.P. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 2011, 106, 196801. [Google Scholar] [CrossRef]
- Cao, H.; Tian, J.; Miotkowski, I.; Shen, T.; Hu, J.; Qiao, S.; Chen, Y.P. Quantized Hall effect and Shubnikov-de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett. 2012, 108, 216803. [Google Scholar] [CrossRef]
- Kushwaha, S.K.; Gibson, Q.D.; Xiong, J.; Pletikosic, I.; Weber, A.P.; Fedorov, A.V.; Ong, N.P.; Valla, T.; Cava, R.J. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se. J. Appl. Phys. 2014, 115, 143708. [Google Scholar] [CrossRef]
- Amaladass, E.P.; Devidas, T.R.; Sharma, S.; Sundar, C.S.; Mani, A.; Bharathi, A. Magneto-transport behaviour of Bi2Se3-xTex: Role of disorder. J. Phys. Condens. Matter 2016, 28, 075003. [Google Scholar] [CrossRef]
- Devidas, T.R.; Abhirami, S.; Sharma, S.; Amaladas, E.P.; Mani, A. High-pressure studies on electronic transport properties of Te-substituted Bi2Se3-xTex topological insulators. Europhys. Lett. 2018, 121, 67001. [Google Scholar] [CrossRef]
- Zou, W.; Wang, W.; Kou, X.; Lang, M.; Fan, Y.; Choi, E.S.; Fedorov, A.V.; Wang, K.; He, L.; Xu, Y.; et al. Observation of Quantum Hall effect in an ultra-thin (Bi0.53Sb0.47)2Te3 film. Appl. Phys. Lett. 2017, 110, 212401. [Google Scholar] [CrossRef]
- Xiong, J.; Petersen, A.C.; Qu, D.; Hor, Y.S.; Cava, R.J.; Ong, N.P. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ωcm). Physica E 2012, 44, 917–920. [Google Scholar] [CrossRef]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 2010, 82, 241306. [Google Scholar] [CrossRef]
- Arakane, T.; Sato, T.; Souma, S.; Kosaka, K.; Nakayama, K.; Komatsu, M.; Takahashi, T.; Ren, Z.; Segawa, K.; Ando, Y. Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey. Nat. Commun. 2012, 3, 636. [Google Scholar] [CrossRef]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Optimizing Bi2-xSbxTe3-ySey solid solutions to approach the intrinsic topological insulator regime. Phys. Rev. B 2011, 84, 165311. [Google Scholar] [CrossRef]
- Tu, N.H.; Tanabe, Y.; Huynh, K.K.; Sato, Y.; Oguro, H.; Heguri, S.; Tsuda, K.; Terauchi, M.; Watanabe, K.; Tanigaki, K. Van der Waals epitaxial growth of topological insulator Bi2-xSbxTe3-ySey ultrathin nanoplate on electrically insulating fluorophlogopite mica. Appl. Phys. Lett. 2014, 105, 063104. [Google Scholar] [CrossRef]
- Xu, Y.; Miotkowski, I.; Chen, Y.P. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 2016, 7, 11434. [Google Scholar] [CrossRef]
- Xu, Y.; Miotkowski, I.; Liu, C.; Tian, J.; Nam, H.; Alidoust, N.; Hu, J.; Shih, C.-K.; Hasan, M.Z.; Chen, Y.P. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 2014, 10, 956–963. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.P. Chapter Three—Quantum transport study in three-dimensional topological insulator BiSbTeSe2. In Semiconductors and Semimetals; Li, L., Sun, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 108, pp. 73–124. [Google Scholar]
- Han, K.B.; Chong, S.K.; Oliynyk, A.O.; Nagaoka, A.; Petryk, S.; Scarpulla, M.A.; Deshpande, V.V.; Sparks, T.D. Enhancement in surface mobility and quantum transport of Bi2-xSbxTe3-ySey topological insulator by controlling the crystal growth conditions. Sci. Rep. 2018, 8, 17290. [Google Scholar] [CrossRef]
- Mal, P.; Das, B.; Bera, G.; Rambabu, P.; Turpu, G.R.; Tomy, C.V.; Das, P. Observation of 2D transport in Sn- and In- doped Bi2-xSbxTe3-ySey topological insulator. J. Appl. Phys. 2021, 129, 095702. [Google Scholar] [CrossRef]
- Wang, Z.; Taskin, A.A.; Frölich, T.; Braden, M.; Ando, Y. Superconductivity in Tl0.6Bi2Te3 derived from a topological insulator. Chem. Mater. 2016, 28, 779–784. [Google Scholar] [CrossRef]
Nominal Samples | Actual Contents (%) | ||||
---|---|---|---|---|---|
Bi | Sb | Te | Se | ||
BiSbTeSe2 | 24.88 | 17.13 | 19.68 | 38.31 | |
x | 0.02 | 24.84 | 15.63 | 18.90 | 40.63 |
0.03 | 23.43 | 17.62 | 19.56 | 39.38 | |
0.04 | 24.14 | 17.58 | 20.10 | 38.18 | |
0.05 | 24.37 | 17.57 | 20.30 | 37.76 | |
y | 0.02 | 22.43 | 19.12 | 21.07 | 37.38 |
0.03 | 24.19 | 17.81 | 20.04 | 37.97 | |
0.04 | 23.13 | 18.77 | 20.96 | 37.07 | |
0.05 | 21.84 | 19.49 | 21.07 | 36.83 |
Nominal Samples | Carrier Density and Mobility | nb (cm−3) | Δ (meV) | ||||
---|---|---|---|---|---|---|---|
n1 (cm−2) | μ1 (cm2V−1s−1) | n2 (cm−2) | μ1 (cm2V−1s1) | ||||
BiSbTeSe2 | −4.15 × 1011 | 1324 | −9.16 × 1012 | 252 | −1.50 × 1015 | 38 | |
x | 0.02 | −2.10 × 1010 | 6930 | 2.07 × 1012 | 1193 | 1.38 × 1015 | 153 |
0.03 | −2.44 × 1010 | 5573 | 3.55 × 1012 | 944 | 7.40 × 1014 | 144 | |
0.04 | - | - | - | - | - | 139 | |
0.05 | 8.87 × 1014 | 675 | −3.62 × 1016 | 431 | −2.55 × 1018 | ||
y | 0.02 | 1.12 × 1013 | 2182 | −1.29 × 1013 | 1257 | −1.29 × 1015 | 30 |
0.03 | - | - | - | - | - | 13 | |
0.04 | 2.53 × 1011 | 4575 | −3.25 × 1013 | 89 | −4.33 × 1015 | 125 | |
0.05 | −1.26 × 1018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, P.; Zhang, X.; Yang, L.; Zhang, Y.; Hu, D.; Chen, F.; Qi, H.; Wang, Z. Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping. Materials 2025, 18, 1110. https://doi.org/10.3390/ma18051110
Zhu P, Zhang X, Yang L, Zhang Y, Hu D, Chen F, Qi H, Wang Z. Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping. Materials. 2025; 18(5):1110. https://doi.org/10.3390/ma18051110
Chicago/Turabian StyleZhu, Peng, Xin Zhang, Liu Yang, Yuqi Zhang, Deng Hu, Fuhong Chen, Haoyu Qi, and Zhiwei Wang. 2025. "Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping" Materials 18, no. 5: 1110. https://doi.org/10.3390/ma18051110
APA StyleZhu, P., Zhang, X., Yang, L., Zhang, Y., Hu, D., Chen, F., Qi, H., & Wang, Z. (2025). Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping. Materials, 18(5), 1110. https://doi.org/10.3390/ma18051110